datamover_primitives.h 26.7 KB
Newer Older
F
Feng Xing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#ifdef PADDLE_WITH_CUDA
N
niuliling123 已提交
17 18
#include <cuda.h>
#include <cuda_fp16.h>
19 20 21 22
#endif
#ifdef PADDLE_WITH_HIP
#include <hip/hip_fp16.h>
#endif
23
#include "paddle/phi/core/ddim.h"
F
Feng Xing 已提交
24

25
namespace phi {
26
namespace kps {
N
niuliling123 已提交
27 28 29 30 31 32 33 34
namespace details {

#define INT_BITS 32

template <typename T, int VecSize>
struct alignas(sizeof(T) * VecSize) VectorType {
  T val[VecSize];
};
35 36 37 38 39 40 41
/**
 * Fast division : Replace division in CUDA with multiplication to improve
 * kernel performance.
 * 1. Complete the division calculation on the CPU, and record the calculation
 * results by using the divider and shift_val.
 * 2. Set the divisor on the GPU through Div() to complete the calculation.
 */
N
niuliling123 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
struct FastDivMod {
  // 1st value represents the result of input number divides by recorded divisor
  // 2nd value represents the result of input number modulo by recorded divisor
  using DivModT = VectorType<uint32_t, 2>;

  FastDivMod() {}
  HOSTDEVICE FastDivMod(uint32_t d) : divisor(d) {
    static_assert(sizeof(unsigned int) == 4,
                  "Only Support 32-bit unsigned int.");

    for (shift_val = 0; shift_val < INT_BITS; ++shift_val) {
      auto shift_limit = 1 << shift_val;
      if (shift_limit >= divisor) break;
    }
    uint64_t long_one = 1;
    uint64_t temp_div =
        ((long_one << INT_BITS) * ((long_one << shift_val) - divisor)) /
            divisor +
        1;
    multiplier = temp_div;
  }

  __device__ __forceinline__ uint32_t Div(uint32_t n) const {
    uint32_t t = __umulhi(n, multiplier);
    return (t + n) >> shift_val;
  }

  __device__ __forceinline__ DivModT Divmod(uint32_t n) const {
    uint32_t q = Div(n);
    DivModT result = {q, n - q * divisor};
    return result;
  }

  int32_t divisor;
  int32_t shift_val;
  uint32_t multiplier;
};

80 81 82 83 84
/**
 * Configuration of broadcast. Calculate the input data index according to the
 * index of the output data. if input or output shape is [dim0, dim1] then dims
 * must be [dim1, dim0].
 */
N
niuliling123 已提交
85 86 87
template <int kDims>
struct BroadcastConfig {
  FastDivMod divmoders[kDims];
88
  uint32_t strides[phi::DDim::kMaxRank];
N
niuliling123 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
  HOSTDEVICE BroadcastConfig() {}

  HOSTDEVICE BroadcastConfig(const std::vector<int64_t>& out_dims,
                             const std::vector<int64_t>& in_dims,
                             int dim_size) {
    std::vector<uint32_t> strides_in;
    std::vector<FastDivMod> divmoders_in;
    // for divmoders
    divmoders_in.resize(dim_size);
    for (int i = 0; i < dim_size; ++i) {
      divmoders_in[i] = FastDivMod(out_dims[i]);
    }
    // for strides
    strides_in.resize(dim_size, 1);
    for (int i = 0; i < dim_size; ++i) {
      strides_in[i] = in_dims[i] == 1 ? 0 : strides_in[i];
105 106 107 108 109 110
      strides_in[i] = (i != 0 && strides_in[i] != 0)
                          ? std::accumulate(in_dims.begin(),
                                            in_dims.begin() + i,
                                            1,
                                            std::multiplies<int64_t>())
                          : strides_in[i];
N
niuliling123 已提交
111 112 113 114 115 116 117
    }

    memcpy(strides, strides_in.data(), kDims * sizeof(uint32_t));
    memcpy(divmoders, divmoders_in.data(), kDims * sizeof(FastDivMod));
  }
};

118 119 120 121 122 123 124 125
template <typename T>
__device__ __forceinline__ void WriteData(T* dst,
                                          T* __restrict__ src,
                                          int num) {
  for (int i = 0; i < num; i++) {
    dst[i] = src[i];
  }
}
N
niuliling123 已提交
126 127 128
#undef INT_BITS
}  // namespace details

129
/**
130 131
 * @brief Read 2D data from global memory to register according to Tx type, and
 * store it as Ty type into register.
132 133 134 135 136 137 138
 *
 * @template paraments
 * Tx: The type of data stored in the global memory.
 * Ty: The type of data that needs to be stored in registers.
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For GPU,
139
 * threadIdx.x is used as the thread index. Currently only GPU was supported.
140 141 142 143 144
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
 * NX x NY x blockDim, boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
145
 * @param:
146
 * dst: The register pointer of the thread, the size is NX * NY.
147 148 149 150 151 152 153
 * src: The data pointer of the current block.
 * size_nx: The maximum offset of the current block is size_nx elements in the
 * lowest dimension. The parameters are only calculated when isboundary = true.
 * size_ny: The maximum offset of the current block is size_ny elements in the
 * first dimension. The parameters are only calculated when isboundary = true.
 * stride_nx: Each read one element stride stride_nx elements in the last dim.
 * stride_ny: Each read one element stride stride_ny elements in the first dim.
154
 */
155 156 157 158 159
template <typename Tx,
          typename Ty,
          int NX,
          int NY,
          int BlockSize,
160
          bool IsBoundary = false>
161 162 163 164 165 166
__device__ __forceinline__ void ReadData(Ty* dst,
                                         const Tx* __restrict__ src,
                                         int size_nx,
                                         int size_ny,
                                         int stride_nx,
                                         int stride_ny) {
167
  int thread_offset = threadIdx.x;
168
  int left_size_nx = size_nx - thread_offset;
169 170 171 172

  // Each branch is added for better performance
  if (NX == 1 && NY == 1) {  // for NX == 1 and NY == 1
    if (IsBoundary) {
173 174
      if (left_size_nx > 0) {
        dst[0] = static_cast<Ty>(src[thread_offset]);
175 176
      }
    } else {
177
      dst[0] = static_cast<Ty>(src[thread_offset]);
178 179
    }
  } else if (NX == 1) {  // for NX == 1 and NY != 1
N
niuliling123 已提交
180
#pragma unroll
181 182
    for (int idy = 0; idy < NY; ++idy) {
      if (IsBoundary) {
183
        if (idy * stride_ny >= size_ny) {
184 185 186
          break;
        }
      }
187
      dst[idy] = static_cast<Ty>(src[thread_offset + idy * stride_ny]);
188 189 190 191 192
    }
  } else if (NY == 1) {  // for NY == 1 and NX != 1
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (IsBoundary) {
193
        if (idx * stride_nx >= left_size_nx) {
194 195 196
          break;
        }
      }
197
      dst[idx] = static_cast<Ty>(src[thread_offset + idx * stride_nx]);
198 199 200 201 202
    }
  } else {  // for NX != 1 and NY != 1
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (IsBoundary) {
203
        if (idx * stride_nx >= left_size_nx) {
204 205 206 207 208 209
          break;
        }
      }
#pragma unroll
      for (int idy = 0; idy < NY; ++idy) {
        if (IsBoundary) {
210
          if (idy * stride_ny >= size_ny) {
211 212 213
            break;
          }
        }
214 215
        dst[idy * NX + idx] = static_cast<Ty>(
            src[thread_offset + idx * stride_nx + idy * stride_ny]);
216
      }
N
niuliling123 已提交
217 218 219 220
    }
  }
}

221 222 223 224 225 226 227 228 229 230 231
/**
 * @brief Initialize register with init_data.
 *
 * @template paraments
 * T: Data type of register.
 * NX: Number of data to initialize.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX.
 * init_data: Initial value.
 */
232 233 234 235 236 237 238 239
template <typename T, int NX>
__device__ __forceinline__ void Init(T* dst, T init_data) {
#pragma unroll
  for (int i = 0; i < NX; i++) {
    dst[i] = init_data;
  }
}

240 241 242 243 244 245 246 247 248 249 250 251
/**
 * The difference from the above function is that
 * it supports different data types of inputs.
 */
template <typename T, typename ArgsT, int Index, int NX>
__device__ __forceinline__ void Init(ArgsT* dst, T init_data) {
#pragma unroll
  for (int i = 0; i < NX; i++) {
    std::get<Index>(dst[i]) = init_data;
  }
}

252
/**
253
 * @brief Read 1D data from global memory to register. When IsBoundary = true
254 255 256 257
 * and (NX % 4 == 0 or Nx % 2 == 0), vectorized load data will be used to
 * improve memory access efficiency.
 *
 * @template paraments
258 259 260
 * T: The type of data.
 * NX: Each thread load NX data from global memory continuously.
 * NY: Each thread need to load NY rows, only NY = 1 was supported.
261
 * BlockSize: Identifies the current device thread index method. For GPU,
262
 * threadIdx.x is used as the thread index. Currently only GPU was supported.
263 264
 * IsBoundary: Whether to make an out-of-bounds judgment on access to memory.
 * When the number of data processed by this block is less than
265
 * NX x NY x blockDim.x, boundary judgment is required to avoid memory access
266 267
 * crossing the boundary.
 *
268
 * @param:
269
 * dst: The register pointer of the thread, the size is NX * NY.
270
 * src: The data pointer of the current block.
271
 * size: The current block needs to load size data continuously.
272 273
 */
template <typename T, int NX, int NY, int BlockSize, bool IsBoundary = false>
274 275
__device__ __forceinline__ void ReadData(T* dst,
                                         const T* __restrict__ src,
276 277
                                         int num) {
  if (IsBoundary) {  // blockDim.x * NX > num
278
    int thread_offset = threadIdx.x * NX;
279 280
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
281 282
      if (idx + thread_offset < num) {
        dst[idx] = src[thread_offset + idx];
283 284 285
      }
    }
  } else {  // blockDim,x * NX < num
286 287
    constexpr int kVectorSize = (NX % 4 == 0) ? 4 : (NX % 2 == 0) ? 2 : 1;
    constexpr int kVectorsPerThread = NX / kVectorSize;
288
    int thread_offset = threadIdx.x * kVectorsPerThread;
N
niuliling123 已提交
289

290
    using VecType = details::VectorType<T, kVectorSize>;
N
niuliling123 已提交
291
    const VecType* vec_input = reinterpret_cast<const VecType*>(src);
292 293
    VecType vec_temp[kVectorsPerThread];

N
niuliling123 已提交
294
#pragma unroll
295
    for (int i = 0; i < kVectorsPerThread; ++i) {
296
      vec_temp[i] = vec_input[thread_offset + i];
297 298 299 300
#pragma unroll
      for (int idx = 0; idx < NX; ++idx) {
        dst[idx] = *(reinterpret_cast<T*>(vec_temp) + idx);
      }
N
niuliling123 已提交
301 302 303 304
    }
  }
}

305 306 307
/**
 * @brief Read 1D data from global memory to register. The difference
 * from the above function is that it supports different data types of inputs.
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
 *
 * @template paraments
 * T: The type of data.
 * NX: Each thread load NX data from global memory continuously.
 * NY: Each thread need to load NY rows, only NY = 1 was supported.
 * ArgsT: The Type if dst, ArgsT can be std::tuple<T> or std::tuple<Args>
 * Index: The index of data stored in dst.
 * BlockSize: Identifies the current device thread index method. For GPU,
 * threadIdx.x is used as the thread index. Currently only GPU was supported.
 * IsBoundary: Whether to make an out-of-bounds judgment on access to memory.
 * When the number of data processed by this block is less than
 * NX x NY x blockDim.x, boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX * NY.
 * src: The data pointer of the current block.
 * size: The current block needs to load size data continuously.
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
 */
template <typename T,
          int NX,
          int NY,
          int BlockSize,
          typename ArgsT,
          int Index,
          bool IsBoundary = false>
__device__ __forceinline__ void ReadData(ArgsT* dst,
                                         const T* __restrict__ src,
                                         int num) {
  if (IsBoundary) {  // blockDim.x * NX > num
    int thread_offset = threadIdx.x * NX;
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (idx + thread_offset < num) {
        std::get<Index>(dst[idx]) = src[thread_offset + idx];
      }
    }
  } else {  // blockDim,x * NX < num
    constexpr int kVectorSize = (NX % 4 == 0) ? 4 : (NX % 2 == 0) ? 2 : 1;
    constexpr int kVectorsPerThread = NX / kVectorSize;
    int thread_offset = threadIdx.x * kVectorsPerThread;

    using VecType = details::VectorType<T, kVectorSize>;
    const VecType* vec_input = reinterpret_cast<const VecType*>(src);
    VecType vec_temp[kVectorsPerThread];

#pragma unroll
    for (int i = 0; i < kVectorsPerThread; ++i) {
      vec_temp[i] = vec_input[thread_offset + i];
#pragma unroll
      for (int idx = 0; idx < NX; ++idx) {
        std::get<Index>(dst[idx]) = *(reinterpret_cast<T*>(vec_temp) + idx);
      }
    }
  }
}

365
/**
366
 * @brief Read 2D data from global memory to registers with broadcast form.
367 368 369 370 371 372
 *
 * @template paraments
 * T: The type of data stored in the global memory.
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For GPU,
373
 * threadIdx.x is used as the thread index. Currently only GPU was supported.
374 375 376
 * Rank: The shape size of out. eg in[1, 35], out[32, 35] then shape size is 2.
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
377
 * NX x NY x blockDim.x, boundary judgment is required to avoid memory access
378 379
 * crossing the boundary.
 *
N
niuliling123 已提交
380
 * @param:
381
 * dst: The register pointer of the thread, the size is NX * NY.
382 383
 * src: The original input data pointer of this kernel.
 * block_offset: The data offset of this block, blockDim.x * blockIdx.x * NX.
384
 * config: Calculation configuration of broadcast. It is used to calculate the
385
 * coordinate mapping relationship between output data and input data.
386
 * total_num_output: Total number of original output.
387 388
 * stride_nx: Each read one element stride stride_nx elements in the last dim.
 * stride_ny: Each read one element stride stride_ny elements in the first dim.
N
niuliling123 已提交
389
 */
390 391 392 393 394
template <typename T,
          int NX,
          int NY,
          int BlockSize,
          int Rank,
395
          bool IsBoundary = false>
N
niuliling123 已提交
396
__device__ __forceinline__ void ReadDataBc(
397 398 399 400 401 402
    T* dst,
    const T* __restrict__ src,
    uint32_t block_offset,
    details::BroadcastConfig<Rank> config,
    int total_num_output,
    int stride_nx,
403
    int stride_ny) {
404
  uint32_t thread_offset = block_offset + threadIdx.x;
405
  uint32_t index_src = 0;
N
niuliling123 已提交
406 407 408 409 410

#pragma unroll
  for (int ny = 0; ny < NY; ++ny) {
#pragma unroll
    for (uint32_t nx = 0; nx < NX; ++nx) {
411 412
      uint32_t index_output = thread_offset + ny * stride_ny + nx * stride_nx;
      index_src = 0;
413
      if (IsBoundary) {
414
        if (index_output >= total_num_output) {
415
          break;
N
niuliling123 已提交
416 417
        }
      }
418
#pragma unroll
419
      for (int i = 0; i < Rank; ++i) {
420 421 422
        auto fast_divmoder = config.divmoders[i].Divmod(index_output);
        index_output = fast_divmoder.val[0];
        index_src += fast_divmoder.val[1] * config.strides[i];
423
      }
424
      dst[nx + ny * NX] = src[index_src];
N
niuliling123 已提交
425 426 427 428
    }
  }
}

429
/**
430
 * @brief Read 2D data from global memory to register with reduce form.
431 432
 *
 * @template paraments
433
 * T: The type of data.
434 435 436
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For GPU,
437
 * threadIdx.x is used as the thread index. Currently only GPU was supported.
438 439 440
 * Rank: The shape size of out. eg in[1, 35], out[32, 35] then shape size is 2.
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
441
 * NX x NY x blockDim.x, boundary judgment is required to avoid memory access
442 443
 * crossing the boundary.
 *
444
 * @param:
445
 * dst: The register pointer of the thread, the size is NX * NY.
446 447
 * src: The input data pointer of this block.
 * block_offset: The data offset of this block, blockDim.x * blockIdx.x * NX.
448
 * index_cal: Calculation configuration of Reduce. It is used to calculate the
449
 * coordinate mapping relationship between output data and input data.
450
 * size_nx: The current block needs to load size_nx columns of data, this
451 452 453
 * parameter will participate in the calculation when isboundary = true.
 * size_ny: The current block needs to load size_ny rows of data, this parameter
 * will participate in the calculation when isboundary = true.
454
 * will be used when IsBoundary = true.
455 456
 * stride_nx: Each read one element stride stride_nx columns.
 * stride_ny: Each read one element stride stride_ny raws.
457 458
 * reduce_last_dim: Used to indicate whether the dimension of reduce contains
 * the lowest dimension.
459
 */
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
template <typename Tx,
          typename Ty,
          int NX,
          int NY,
          int BlockSize,
          int Rank,
          typename IndexCal,
          typename Functor,
          bool IsBoundary = false>
__device__ __forceinline__ void ReadDataReduce(Ty* dst,
                                               const Tx* __restrict__ src,
                                               int block_offset,
                                               const IndexCal& index_cal,
                                               int size_nx,
                                               int size_ny,
                                               int stride_nx,
                                               int stride_ny,
                                               Functor func,
                                               bool reduce_last_dim) {
479
  int thread_offset = 0;
480
  int left_idx = 0;
481
  if (reduce_last_dim) {
482 483
    thread_offset = threadIdx.x;
    left_idx = threadIdx.y;
484
  } else {
485 486
    thread_offset = threadIdx.y;
    left_idx = threadIdx.x;
487 488 489
  }

  if (NX == 1) {
N
niuliling123 已提交
490
#pragma unroll
491 492
    for (int ny = 0; ny < NY; ++ny) {
      if (IsBoundary) {
493
        if (thread_offset >= size_ny) {
494 495 496
          break;
        }
      }
497
      uint32_t index_src = index_cal(thread_offset + block_offset);
498
      dst[ny] = static_cast<Ty>(func(src[index_src]));
499
      thread_offset += stride_ny;
500 501 502 503 504 505 506
    }
  } else {
#pragma unroll
    for (int nx = 0; nx < NX; ++nx) {
#pragma unroll
      for (int ny = 0; ny < NY; ++ny) {
        if (IsBoundary) {
507 508
          if ((thread_offset >= size_ny) ||
              (left_idx + nx * stride_nx >= size_nx)) {
509 510 511
            break;
          }
        }
512
        uint32_t index_src = index_cal(thread_offset + block_offset);
513
        dst[nx + ny * NX] = static_cast<Ty>(func(src[index_src]));
514
        thread_offset += stride_ny;
515
      }
N
niuliling123 已提交
516 517
    }
  }
F
Feng Xing 已提交
518
}
N
niuliling123 已提交
519

520
/**
521 522 523 524 525 526
 * @brief Write 2D data from registers to global memory. When IsBoundary = true
 * and (NX % 4 == 0 or Nx % 2 == 0), the data will be vectorized to improve the
 * data loading efficiency
 *
 * @template paraments
 * T: The type of data.
527
 * NX: The number of data continuously writed by each thread.
528 529
 * NY: The number of data rows loaded by each thread, only NY = 1 was supported.
 * BlockSize: Identifies the current device thread index method. For GPU,
530
 * threadIdx.x is used as the thread index. Currently only GPU was supported.
531 532
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
533
 * NX x NY x blockDim.x, boundary judgment is required to avoid memory access
534 535
 * crossing the boundary.
 *
536
 * @param:
537 538 539
 * dst: The data pointer of the current block.
 * src: The register pointer, the size is NX * NY.
 * size: The current block needs to load size elements continuously.
540 541
 */
template <typename T, int NX, int NY, int BlockSize, bool IsBoundary = false>
542 543
__device__ __forceinline__ void WriteData(T* dst,
                                          T* __restrict__ src,
544 545
                                          int num) {
  if (IsBoundary) {
546
    int thread_offset = threadIdx.x * NX;
547 548
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
549 550
      if ((thread_offset + idx) < num) {
        dst[thread_offset + idx] = src[idx];
551 552
      }
    }
N
niuliling123 已提交
553 554
  } else {
    // Vector type
555 556
    constexpr int kVectorSize = (NX % 4 == 0) ? 4 : (NX % 2 == 0) ? 2 : 1;
    constexpr int kVectorsPerThread = NX / kVectorSize;
557

558
    int thread_offset = threadIdx.x * kVectorsPerThread;
559 560 561
    using VecType = details::VectorType<T, kVectorSize>;
    VecType* vec_dst = reinterpret_cast<VecType*>(dst);
    VecType vec_temp[kVectorsPerThread];
N
niuliling123 已提交
562
#pragma unroll
563
    for (int idx = 0; idx < kVectorsPerThread; ++idx) {
N
niuliling123 已提交
564
      vec_temp[idx] = *(reinterpret_cast<VecType*>(src) + idx);
565
      vec_dst[thread_offset + idx] = vec_temp[idx];
N
niuliling123 已提交
566 567
    }
  }
F
Feng Xing 已提交
568
}
N
niuliling123 已提交
569

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
/**
 * @brief Write 2D data from register to global memory according to Tx type, and
 * store it as Ty type.
 *
 * @template paraments
 * Tx: The type of data that needs to be stored in registers.
 * Ty: The type of data that stored in the global memory.
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For GPU,
 * threadIdx.x is used as the thread index. Currently only GPU was supported.
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
 * NX x NY x blockDim.x, boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: The data pointer of the current block.
 * src: The register pointer of the thread, the size is NX * NY.
 * size_nx: The maximum offset of the current block is size_nx elements in the
 * lowest dimension. The parameters are only calculated when isboundary = true.
 * size_ny: The maximum offset of the current block is size_ny elements in the
 * first dimension. The parameters are only calculated when isboundary = true.
 * stride_nx: Each read one element stride stride_nx elements in the last dim.
 * stride_ny: Each read one element stride stride_ny elements in the first dim.
 */
596 597 598 599 600
template <typename Tx,
          typename Ty,
          int NX,
          int NY,
          int BlockSize,
601
          bool IsBoundary = false>
602 603 604 605 606 607
__device__ __forceinline__ void WriteData(Ty* dst,
                                          const Tx* __restrict__ src,
                                          int size_nx,
                                          int size_ny,
                                          int stride_nx,
                                          int stride_ny) {
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
  int thread_offset = threadIdx.x;
  int left_size_nx = size_nx - thread_offset;

  // Each branch is added for better performance
  if (NX == 1 && NY == 1) {  // for NX == 1 and NY == 1
    if (IsBoundary) {
      if (left_size_nx > 0) {
        dst[thread_offset] = static_cast<Ty>(src[0]);
      }
    } else {
      dst[thread_offset] = static_cast<Ty>(src[0]);
    }
  } else if (NX == 1) {  // for NX == 1 and NY != 1
#pragma unroll
    for (int idy = 0; idy < NY; ++idy) {
      if (IsBoundary) {
        if (idy * stride_ny >= size_ny) {
          break;
        }
      }
      dst[thread_offset + idy * stride_ny] = static_cast<Ty>(src[idy]);
    }
  } else if (NY == 1) {  // for NY == 1 and NX != 1
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (IsBoundary) {
        if (idx * stride_nx >= left_size_nx) {
          break;
        }
      }
      dst[thread_offset + idx * stride_nx] = static_cast<Ty>(src[idx]);
    }
  } else {  // for NX != 1 and NY != 1
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (IsBoundary) {
        if (idx * stride_nx >= left_size_nx) {
          break;
        }
      }
#pragma unroll
      for (int idy = 0; idy < NY; ++idy) {
        if (IsBoundary) {
          if (idy * stride_ny >= size_ny) {
            break;
          }
        }
        dst[thread_offset + idx * stride_nx + idy * stride_ny] =
            static_cast<Ty>(src[idy * NX + idx]);
      }
    }
  }
}

/**
 * @brief Initialize register with init_data.
 *
 * @template paraments
 * T: Data type of register.
 * NX: Number of data to initialize.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX.
 * init_data: The register pointer of init data, the size is NX.
 */
template <typename T, int NX, bool IsBoundary = false>
__device__ __forceinline__ void Init(T* dst, T* init_data, int num) {
#pragma unroll
  for (int i = 0; i < NX; i++) {
    if (IsBoundary) {
      if (i >= num) {
        break;
      }
    }
    dst[i] = init_data[i];
  }
}

/**
 * @brief Read 1D data from global memory to register with broadcast form.
 *
 * @template paraments
 * T: The type of data stored in the global memory.
 * NX: The number of data continuously loaded by each thread.
 * NY: The number of data rows loaded by each thread, only NY = 1 was supported.
 * BlockSize: Identifies the current device thread index method. For GPU,
 * threadIdx.x is used as the thread index. Currently only GPU was supported.
 * Rank: The shape size of out. eg in[1, 35], out[32, 35] then shape size is 2.
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
 * NX x NY x blockDim.x, boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX * NY.
 * src: The original input data pointer of kernel.
 * block_offset: The data offset of this block, blockDim.x * blockIdx.x * NX;
 * config: Calculation configuration of broadcast. It is used to calculate the
 * coordinate mapping relationship between output data and input data.
 * total_num_output: Total number of original output.
 */
709 710 711 712 713
template <typename T,
          int NX,
          int NY,
          int BlockSize,
          int Rank,
714 715
          bool IsBoundary = false>
__device__ __forceinline__ void ReadDataBc(
716 717 718 719 720
    T* dst,
    const T* __restrict__ src,
    uint32_t block_offset,
    details::BroadcastConfig<Rank> config,
    int total_num_output) {
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
  uint32_t thread_offset = block_offset + threadIdx.x * NX;
  uint32_t index_src = 0;

#pragma unroll
  for (uint32_t nx = 0; nx < NX; ++nx) {
    uint32_t index_output = thread_offset + nx;
    index_src = 0;
    if (IsBoundary) {
      if (index_output >= total_num_output) {
        break;
      }
    }
#pragma unroll
    for (int i = 0; i < Rank; ++i) {
      auto fast_divmoder = config.divmoders[i].Divmod(index_output);
      index_output = fast_divmoder.val[0];
      index_src += fast_divmoder.val[1] * config.strides[i];
    }
    dst[nx] = src[index_src];
  }
}

743 744 745 746 747 748 749 750 751 752 753 754 755 756
/**
 * @brief Initialize register with data index.
 *
 * @template paraments
 * T: Data type of register.
 * NX: Number of data to initialize.
 * NY: Number of data to initialize, NY only can be 1.
 * BlockSize: Identifies the current device thread index method. For GPU,
 * threadIdx.x is used as the thread index. Currently only GPU was supported.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX.
 * init_data: The register pointer of init data, the size is NX.
 */
757 758 759 760 761 762 763 764 765
template <typename T, int NX, int NY, int BlockSize>
__device__ __forceinline__ void InitWithDataIndex(T* dst, int block_offset) {
  int thread_offset = block_offset + threadIdx.x * NX;
#pragma unroll
  for (int nx = 0; nx < NX; ++nx) {
    dst[nx] = static_cast<T>(thread_offset + nx);
  }
}

766
}  // namespace kps
767
}  // namespace phi