test_embedding_rule.py 8.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

from paddle.distributed.auto_parallel.static.completion import get_spmd_rule
from paddle.distributed.auto_parallel.static.dist_attribute import (
    DistTensorSpec,
    TensorDistAttr,
)
from paddle.distributed.fleet import auto


class TestEmbeddingSPMDRule(unittest.TestCase):
    def setUp(self):
        self.rule1 = get_spmd_rule("lookup_table_v2")

29 30
    def test_embedding_infer_forward(self):
        # forward setup
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
        x_shape = [4, 1024]  # [B,S]
        table_shape = [512, 768]  # [V,H]
        process_mesh = auto.ProcessMesh(mesh=[[0, 1, 2, 3], [4, 5, 6, 7]])

        x_tensor_dist_attr = TensorDistAttr()
        x_tensor_dist_attr.process_mesh = process_mesh
        self.x_dist_tensor_spec = DistTensorSpec(x_shape, x_tensor_dist_attr)

        table_tensor_dist_attr = TensorDistAttr()
        table_tensor_dist_attr.process_mesh = process_mesh
        self.table_dist_tensor_spec = DistTensorSpec(
            table_shape, table_tensor_dist_attr
        )

        self.attrs = {
            'padding_idx': -1,
            'sparse': False,
        }

        # data parallel
        self.x_dist_tensor_spec.set_dims_mapping([1, -1])
        self.table_dist_tensor_spec.set_dims_mapping([-1, -1])
        result_dist_attrs = self.rule1.infer_forward(
            [self.x_dist_tensor_spec, self.table_dist_tensor_spec], self.attrs
        )
        infered_input_dist_attrs = result_dist_attrs[0]
        infered_output_dist_attrs = result_dist_attrs[1]

        self.assertEqual(len(result_dist_attrs), 2)
        self.assertEqual(len(infered_input_dist_attrs), 2)
        self.assertEqual(len(infered_output_dist_attrs), 1)

        self.assertEqual(infered_input_dist_attrs[0].dims_mapping, [1, -1])
        self.assertEqual(infered_input_dist_attrs[1].dims_mapping, [-1, -1])
        self.assertEqual(infered_output_dist_attrs[0].dims_mapping, [1, -1, -1])

        # table col-wise parallel & dp
        self.x_dist_tensor_spec.set_dims_mapping([1, -1])
        self.table_dist_tensor_spec.set_dims_mapping([-1, 0])
        result_dist_attrs = self.rule1.infer_forward(
            [self.x_dist_tensor_spec, self.table_dist_tensor_spec], self.attrs
        )
        infered_input_dist_attrs = result_dist_attrs[0]
        infered_output_dist_attrs = result_dist_attrs[1]

        self.assertEqual(infered_input_dist_attrs[0].dims_mapping, [1, -1])
        self.assertEqual(infered_input_dist_attrs[1].dims_mapping, [-1, 0])
        self.assertEqual(infered_output_dist_attrs[0].dims_mapping, [1, -1, 0])

        # table row-wise parallel & dp
        self.x_dist_tensor_spec.set_dims_mapping([1, -1])
        self.table_dist_tensor_spec.set_dims_mapping([0, -1])
        result_dist_attrs = self.rule1.infer_forward(
            [self.x_dist_tensor_spec, self.table_dist_tensor_spec], self.attrs
        )
        infered_input_dist_attrs = result_dist_attrs[0]
        infered_output_dist_attrs = result_dist_attrs[1]

        self.assertEqual(infered_input_dist_attrs[0].dims_mapping, [1, -1])
        self.assertEqual(infered_input_dist_attrs[1].dims_mapping, [0, -1])
        self.assertEqual(infered_output_dist_attrs[0].dims_mapping, [1, -1, -1])
92 93
        self.assertEqual(infered_output_dist_attrs[0]._is_partial(), True)
        self.assertEqual(infered_output_dist_attrs[0]._partial_dims(), {0})
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

        # table row-wise parallel & padding_idx
        self.x_dist_tensor_spec.set_dims_mapping([1, -1])
        self.table_dist_tensor_spec.set_dims_mapping([0, -1])
        self.attrs['padding_idx'] = 128
        with self.assertRaises(ValueError):
            result_dist_attrs = self.rule1.infer_forward(
                [self.x_dist_tensor_spec, self.table_dist_tensor_spec],
                self.attrs,
            )

        # table row-wise parallel & sparse
        self.x_dist_tensor_spec.set_dims_mapping([1, -1])
        self.table_dist_tensor_spec.set_dims_mapping([0, -1])
        self.attrs['padding_idx'] = -1
        self.attrs['sparse'] = True
        with self.assertRaises(ValueError):
            result_dist_attrs = self.rule1.infer_forward(
                [self.x_dist_tensor_spec, self.table_dist_tensor_spec],
                self.attrs,
            )

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
    def test_embedding_infer_backward(self):
        # backward setup
        process_mesh = auto.ProcessMesh(mesh=[[0, 1, 2, 3], [4, 5, 6, 7]])

        x_shape = [4, 1024]  # [B,S]
        table_shape = [512, 768]  # [V,H]

        x_tensor_dist_attr = TensorDistAttr()
        x_tensor_dist_attr.process_mesh = (
            process_mesh  # not set the dims mapping is ok.
        )
        self.x_dist_tensor_spec = DistTensorSpec(x_shape, x_tensor_dist_attr)

        table_tensor_dist_attr = TensorDistAttr()
        table_tensor_dist_attr.process_mesh = (
            process_mesh  # not set the dims mapping is ok.
        )
        self.table_dist_tensor_spec = DistTensorSpec(
            table_shape, table_tensor_dist_attr
        )

        out_shape = [4, 1024, 768]  # [B,S, H]
        out_tensor_dist_attr = TensorDistAttr()
        out_tensor_dist_attr.process_mesh = process_mesh
        self.out_dist_tensor_spec = DistTensorSpec(
            out_shape, out_tensor_dist_attr
        )

        self.attrs = {
            'padding_idx': -1,
            'sparse': False,
        }

        # data parallel
        self.out_dist_tensor_spec.set_dims_mapping([1, -1, -1])
        result_dist_attrs = self.rule1.infer_backward(
            [self.x_dist_tensor_spec, self.table_dist_tensor_spec],
            [self.out_dist_tensor_spec],
            self.attrs,
        )
        infered_input_dist_attrs = result_dist_attrs[0]
        infered_output_dist_attrs = result_dist_attrs[1]

        self.assertEqual(len(result_dist_attrs), 2)
        self.assertEqual(len(infered_input_dist_attrs), 2)
        self.assertEqual(len(infered_output_dist_attrs), 1)

        self.assertEqual(infered_input_dist_attrs[0].dims_mapping, [1, -1])
        self.assertEqual(infered_input_dist_attrs[1].dims_mapping, [-1, -1])
        self.assertEqual(infered_output_dist_attrs[0].dims_mapping, [1, -1, -1])

        # table col-wise parallel & dp
        self.out_dist_tensor_spec.set_dims_mapping([-1, 0, 1])
        result_dist_attrs = self.rule1.infer_backward(
            [self.x_dist_tensor_spec, self.table_dist_tensor_spec],
            [self.out_dist_tensor_spec],
            self.attrs,
        )
        infered_input_dist_attrs = result_dist_attrs[0]
        infered_output_dist_attrs = result_dist_attrs[1]

        self.assertEqual(infered_input_dist_attrs[0].dims_mapping, [-1, 0])
        self.assertEqual(infered_input_dist_attrs[1].dims_mapping, [-1, 1])
        self.assertEqual(infered_output_dist_attrs[0].dims_mapping, [-1, 0, 1])

        # sharded on multiple broadcast axes
        self.out_dist_tensor_spec.set_dims_mapping([1, 0, -1])

        result_dist_attrs = self.rule1.infer_backward(
            [self.x_dist_tensor_spec, self.table_dist_tensor_spec],
            [self.out_dist_tensor_spec],
            self.attrs,
        )
        infered_input_dist_attrs = result_dist_attrs[0]
        infered_output_dist_attrs = result_dist_attrs[1]

        self.assertEqual(infered_input_dist_attrs[0].dims_mapping, [1, 0])
        self.assertEqual(infered_input_dist_attrs[1].dims_mapping, [-1, -1])
        self.assertEqual(infered_output_dist_attrs[0].dims_mapping, [1, 0, -1])

        # table row-wise parallel
        # skiped

199 200 201

if __name__ == "__main__":
    unittest.main()