data_transfer.cc 13.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/new_executor/data_transfer.h"

namespace paddle {
namespace framework {
namespace interpreter {

bool DataTranferHelper::apply(const OpKernelType& kernel_type_for_var,
                              const OpKernelType& expected_kernel_key,
                              const std::string& var_name,
                              std::string* new_var_name,
                              std::vector<OpFuncNode>* op_func_nodes,
                              bool use_local_scope) {
  bool is_transferred = false;
  auto* src_var_name = &var_name;

  Scope* local_scope = use_local_scope ? var_scope_->GetMutableLocalScope()
                                       : var_scope_->GetMutableScope();

  // 1. layout transform
  if (need_layout_transform(kernel_type_for_var, expected_kernel_key)) {
    auto op = TransferLayout(
        *src_var_name, new_var_name, kernel_type_for_var.data_layout_,
        expected_kernel_key.data_layout_, var_scope_, local_scope);
    RunAndConstructOpFuncNode(op, *src_var_name, *new_var_name, op_func_nodes);
    // update src_var_name
    src_var_name = new_var_name;
    is_transferred = true;
  }
  // 2. dype transform
  if (need_dtype_transform(kernel_type_for_var, expected_kernel_key)) {
    auto op = TransferDtype(
        *src_var_name, new_var_name, kernel_type_for_var.data_type_,
        expected_kernel_key.data_type_, var_scope_, local_scope);
    RunAndConstructOpFuncNode(op, *src_var_name, *new_var_name, op_func_nodes);
    // update src_var_name
    src_var_name = new_var_name;
    is_transferred = true;
  }
  // 3. device transform
  if (need_device_transform(kernel_type_for_var, expected_kernel_key)) {
    auto src_place = kernel_type_for_var.place_;
    auto dst_place = expected_kernel_key.place_;
    auto op = TransferDevice(*src_var_name, new_var_name, src_place, dst_place,
                             var_scope_, local_scope);
    RunAndConstructOpFuncNode(op, *src_var_name, *new_var_name, op_func_nodes);
    is_transferred = true;
  }
  return is_transferred;
}

void DataTranferHelper::RunAndConstructOpFuncNode(
    const std::shared_ptr<OperatorBase>& op, const std::string& var_name,
    const std::string& new_var_name,
    std::vector<OpFuncNode>* new_op_func_nodes) {
  auto& op_type = op->Type();

  // 1. Construct RuntimeContext
  RuntimeContext runtime_context({}, {});
  runtime_context.inputs["X"] = {var_scope_->Var(var_name)};
  runtime_context.outputs["Out"] = {var_scope_->Var(new_var_name)};
  InterpretercoreInferShapeContext infer_shape_ctx(*op, runtime_context);

  // 2. Execute infer shape and choose kernel
  auto& all_op_kernels = OperatorWithKernel::AllOpKernels();
  static_cast<const framework::OperatorWithKernel*>(op.get())->InferShape(
      &infer_shape_ctx);
  auto kernels_iter = all_op_kernels.find(op_type);
  PADDLE_ENFORCE_NE(kernels_iter, all_op_kernels.end(),
                    platform::errors::Unavailable(
                        "There are no kernels which are registered in "
                        "the %s operator.",
                        op_type));
  OpKernelMap& kernels = kernels_iter->second;
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place_);
  Scope scope;
  auto exec_ctx = ExecutionContext(*op, scope, *dev_ctx, runtime_context);
  auto expected_kernel_key =
      dynamic_cast<const framework::OperatorWithKernel*>(op.get())
          ->GetExpectedKernelType(exec_ctx);
  auto kernel_iter = kernels.find(expected_kernel_key);

  // 3. Execute transfer op and construct OpFuncNode
  OpFuncNode new_op_func_node;
  new_op_func_node.input_index["X"] = {var_scope_->VarId(var_name)};
  new_op_func_node.output_index["Out"] = {var_scope_->VarId(new_var_name)};
  new_op_func_node.kernel_func_ = OpKernelComputeFunc(kernel_iter->second);
  new_op_func_node.kernel_func_(exec_ctx);
  // NOTE(Aurelius84): data_transform_op is expensive operation, so we tag them
  // as kQueueSync and execute them in thread pool.
  new_op_func_node.type_ = OpFuncType::kQueueSync;
  new_op_func_node.dev_ctx_ = dev_ctx;
  new_op_func_node.operator_base_ = op;
  VLOG(3) << "Run " << op_type << " done.";

  new_op_func_nodes->emplace_back(std::move(new_op_func_node));
}

std::shared_ptr<OperatorBase> TransferLayout(const std::string& var_name,
                                             std::string* new_var_name,
                                             DataLayout in_layout,
                                             DataLayout out_layout,
                                             VariableScope* var_scope,
                                             framework::Scope* local_scope) {
  // 1. Generate new_var_name and Initialize it
  *new_var_name =
      var_name + "_layout_" + std::to_string(var_scope->VarSize() + 1);
  auto* ptr = local_scope->Var(new_var_name);

  auto var_type = var_scope->Var(var_name)->Type();
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
126 127 128 129
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
  var_scope->SetVarDesc(*new_var_name, nullptr);
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};
  AttributeMap attr_map = {{"dst_layout", static_cast<int>(out_layout)}};

  // 3. Create transfer_op
  std::string op_type("transfer_layout");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

  VLOG(3) << string::Sprintf("Insert %s(%s) with %s -> %s(%s).", op_type,
                             var_name, in_layout, *new_var_name, out_layout);
  return op;
}

std::shared_ptr<OperatorBase> TransferDtype(const std::string& var_name,
                                            std::string* new_var_name,
                                            proto::VarType::Type in_dtype,
                                            proto::VarType::Type out_dtype,
                                            VariableScope* var_scope,
                                            framework::Scope* local_scope) {
  // 1. Generate new_var_name and Initialize it
  *new_var_name =
      var_name + "_dtype_" + std::to_string(var_scope->VarSize() + 1);
  auto* ptr = local_scope->Var(new_var_name);

  auto var_type = var_scope->Var(var_name)->Type();
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
160 161 162 163
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
  var_scope->SetVarDesc(*new_var_name, nullptr);
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};
  AttributeMap attr_map;
  attr_map["in_dtype"] = static_cast<int>(in_dtype);
  attr_map["out_dtype"] = static_cast<int>(out_dtype);
  // NOTE(Aurelius84): In whice case use_mkldnn = true?
  attr_map["use_mkldnn"] = false;

  // 3. Create transfer_op
  std::string op_type("transfer_dtype");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

  VLOG(3) << string::Sprintf("Insert %s with %s(%s) -> %s(%s).", op_type,
                             var_name, DataTypeToString(in_dtype),
                             *new_var_name, DataTypeToString(out_dtype));
  return op;
}

std::shared_ptr<OperatorBase> TransferDevice(const std::string& var_name,
                                             std::string* new_var_name,
                                             const platform::Place& src_place,
                                             const platform::Place& dst_place,
                                             VariableScope* var_scope,
                                             framework::Scope* local_scope) {
  // 1. Generate new_var_name and Initialize it
  *new_var_name =
      var_name + "_device_" + std::to_string(var_scope->VarSize() + 1);
  auto* ptr = local_scope->Var(new_var_name);

  auto var_type = var_scope->Var(var_name)->Type();
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
199 200 201 202
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
  var_scope->SetVarDesc(*new_var_name, nullptr);
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};
  int dst_place_type = platform::is_cpu_place(dst_place)
                           ? 0
                           : platform::is_gpu_place(dst_place) ? 1 : -1;
  AttributeMap attr_map = {{"dst_place_type", dst_place_type}};

  // 3. Create transfer_op
  std::string op_type = get_memcpy_type(src_place, dst_place);
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

  VLOG(3) << string::Sprintf("Insert %s with %s(%s) -> %s(%s).", op_type,
                             var_name, src_place, *new_var_name, dst_place);
  return op;
}

void ApplyDataTransform(const OpKernelType& expected_kernel_key,
                        const platform::Place& place,
                        VariableValueMap* ins_map_temp,
                        VariableScope* var_scope, OpFuncNode* op_func_node,
                        std::vector<OpFuncNode>* new_op_func_nodes,
                        bool use_local_scope) {
  auto op_base = op_func_node->operator_base_.get();
  PADDLE_ENFORCE_NOT_NULL(op_base, platform::errors::PreconditionNotMet(
                                       "op_base is null, please pass a valid "
                                       "op_base in apply_data_transform."));

  VariableNameMap new_ins(op_base->Inputs());
  // record the no need transform variable index.
  std::unordered_set<int> no_data_transform_index;

  DataTranferHelper data_transfer_helper(place, var_scope);
  for (auto& var_name_item : *ins_map_temp) {
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto var = var_name_item.second[i];
      if (!(var->IsType<LoDTensor>() || var->IsType<SelectedRows>())) {
        continue;
      }
      auto& var_name = new_ins[var_name_item.first].at(i);
      auto tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      if (!tensor_in->IsInitialized()) {
        continue;
      }
      auto kernel_type_for_var =
          static_cast<const framework::OperatorWithKernel*>(op_base)
              ->GetKernelTypeForVar(var_name_item.first, *tensor_in,
                                    expected_kernel_key);
      // apply data transform
      std::string new_var_name;
      bool is_transferred = data_transfer_helper.apply(
          kernel_type_for_var, expected_kernel_key, var_name, &new_var_name,
          new_op_func_nodes, use_local_scope);

      if (is_transferred) {
        // update RuntimeContext.inputs and original op_func_node inputs
        op_func_node->input_index[var_name_item.first][i] =
            var_scope->VarId(new_var_name);
        var_name_item.second[i] = var_scope->Var(new_var_name);
        new_ins[var_name_item.first][i] = new_var_name;
        // NOTE(Aurelius84): avoid deepcopy twice if we already insert data
        // transfer op.
        if (op_base->Type() == "fetch_v2") {
          op_base->SetAttr("deepcopy", false);
        }
      } else {
        // record no need data transformer input var_id
        VLOG(3) << op_base->Type()
                << " found no data_transform var: " << var_name
                << " with id: " << var_scope->VarId(var_name);
        no_data_transform_index.emplace(var_scope->VarId(var_name));
      }
    }
  }

  // NOTE(zhiqiu): UPDATE the corresponding OeratorBase to make it consistent
  // with instruction. (hot fix, it is not good design here)
  op_func_node->operator_base_ =
      std::shared_ptr<OperatorBase>(framework::OpRegistry::CreateOp(
          op_base->Type(), new_ins, op_base->Outputs(), op_base->Attrs()));
  op_func_node->no_data_transform_index = std::move(no_data_transform_index);
}

std::string get_memcpy_type(const platform::Place& src_place,
                            const platform::Place& dst_place) {
  PADDLE_ENFORCE_EQ(platform::is_same_place(src_place, dst_place), false,
                    platform::errors::PreconditionNotMet(
                        "Required src_place shall be different with dst_place, "
                        "but received same place: %s",
                        src_place));
  if (platform::is_gpu_place(dst_place)) {
    return kMemcpyH2D;
  } else if (platform::is_gpu_place(src_place)) {
    return kMemcpyD2H;
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Not support Memcpy typ : %s -> %s", src_place, dst_place));
  }
}

}  // namespace interpreter
}  // namespace framework
}  // namespace paddle