nodes.h 12.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/tensor_wrapper.h"
W
Weilong Wu 已提交
18
#include "paddle/fluid/imperative/tracer.h"
19 20 21 22 23 24 25 26

class Conv2dGradNodeFinal : public egr::GradNodeBase {
 public:
  Conv2dGradNodeFinal() : egr::GradNodeBase() {}
  Conv2dGradNodeFinal(size_t bwd_in_slot_num, size_t bwd_out_slot_num)
      : egr::GradNodeBase(bwd_in_slot_num, bwd_out_slot_num) {}
  ~Conv2dGradNodeFinal() override = default;

27
  virtual paddle::small_vector<std::vector<paddle::Tensor>,
28
                               egr::kSlotSmallVectorSize>
29 30 31 32
  operator()(paddle::small_vector<std::vector<paddle::Tensor>,        // NOLINT
                                  egr::kSlotSmallVectorSize>& grads,  // NOLINT
             bool create_graph = false,                               // NOLINT
             bool is_new_grad = false) override;                      // NOLINT
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
  std::string name() override { return "Conv2dGradNodeFinal"; }

  void ClearTensorWrappers() override {
    input_.clear();
    filter_.clear();

    SetIsTensorWrappersCleared(true);
  }

  std::shared_ptr<GradNodeBase> Copy() const override {
    auto copied_node =
        std::shared_ptr<Conv2dGradNodeFinal>(new Conv2dGradNodeFinal(*this));
    VLOG(3) << "Copy Conv2dGradNodeFinal: " << this
            << " to: " << copied_node.get();
    return copied_node;
  }

  // SetTensorWrapperX, SetTensorWrapperY, ...
51
  void SetTensorWrapperinput(const paddle::Tensor& input) {
52 53
    input_ = egr::TensorWrapper(input, false);
  }
54
  void SetTensorWrapperfilter(const paddle::Tensor& filter) {
55 56 57 58 59 60 61 62 63 64
    filter_ = egr::TensorWrapper(filter, false);
  }

  // SetAttributes
  void SetAttributestrides(const std::vector<int>& strides) {
    strides_ = strides;
  }
  void SetAttributepaddings(const std::vector<int>& paddings) {
    paddings_ = paddings;
  }
65 66
  void SetAttributepadding_algorithm(const std::string& padding_algorithm) {
    padding_algorithm_ = padding_algorithm;
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
  }
  void SetAttributegroups(const int& groups) { groups_ = groups; }
  void SetAttributedilations(const std::vector<int>& dilations) {
    dilations_ = dilations;
  }
  void SetAttributedata_format(const std::string& data_format) {
    data_format_ = data_format;
  }

 private:
  // TensorWrappers
  egr::TensorWrapper input_;
  egr::TensorWrapper filter_;

  // Attributes
  std::vector<int> strides_;
  std::vector<int> paddings_;
84
  std::string padding_algorithm_;
85 86 87 88 89 90 91 92 93 94 95 96
  int groups_;
  std::vector<int> dilations_;
  std::string data_format_;
};

class Conv2dDoubleGradNodeFinal : public egr::GradNodeBase {
 public:
  Conv2dDoubleGradNodeFinal() : egr::GradNodeBase() {}
  Conv2dDoubleGradNodeFinal(size_t bwd_in_slot_num, size_t bwd_out_slot_num)
      : egr::GradNodeBase(bwd_in_slot_num, bwd_out_slot_num) {}
  ~Conv2dDoubleGradNodeFinal() override = default;

97
  virtual paddle::small_vector<std::vector<paddle::Tensor>,
98
                               egr::kSlotSmallVectorSize>
99 100 101 102
  operator()(paddle::small_vector<std::vector<paddle::Tensor>,        // NOLINT
                                  egr::kSlotSmallVectorSize>& grads,  // NOLINT
             bool create_graph = false,                               // NOLINT
             bool is_new_grad = false) override;                      // NOLINT
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
  std::string name() override { return "Conv2dDoubleGradNodeFinal"; }

  void ClearTensorWrappers() override {
    input_.clear();
    filter_.clear();
    grad_out_.clear();

    SetIsTensorWrappersCleared(true);
  }

  std::shared_ptr<GradNodeBase> Copy() const override {
    auto copied_node = std::shared_ptr<Conv2dDoubleGradNodeFinal>(
        new Conv2dDoubleGradNodeFinal(*this));
    return copied_node;
  }

  // SetTensorWrapperX, SetTensorWrapperY, ...
120
  void SetTensorWrapperinput(const paddle::Tensor& input) {
121 122
    input_ = egr::TensorWrapper(input, false);
  }
123
  void SetTensorWrapperfilter(const paddle::Tensor& filter) {
124 125
    filter_ = egr::TensorWrapper(filter, false);
  }
126
  void SetTensorWrappergrad_out(const paddle::Tensor& grad_out) {
127 128 129 130 131 132 133 134 135 136
    grad_out_ = egr::TensorWrapper(grad_out, false);
  }

  // SetAttributes
  void SetAttributestrides(const std::vector<int>& strides) {
    strides_ = strides;
  }
  void SetAttributepaddings(const std::vector<int>& paddings) {
    paddings_ = paddings;
  }
137 138
  void SetAttributepadding_algorithm(const std::string& padding_algorithm) {
    padding_algorithm_ = padding_algorithm;
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
  }
  void SetAttributegroups(const int& groups) { groups_ = groups; }
  void SetAttributedilations(const std::vector<int>& dilations) {
    dilations_ = dilations;
  }
  void SetAttributedata_format(const std::string& data_format) {
    data_format_ = data_format;
  }

 private:
  // TensorWrappers
  egr::TensorWrapper input_;
  egr::TensorWrapper filter_;
  egr::TensorWrapper grad_out_;

  // Attributes
  std::vector<int> strides_;
  std::vector<int> paddings_;
157
  std::string padding_algorithm_;
158 159 160 161
  int groups_;
  std::vector<int> dilations_;
  std::string data_format_;
};
W
Weilong Wu 已提交
162 163 164 165 166 167 168 169

class AddNGradNodeFinal : public egr::GradNodeBase {
 public:
  AddNGradNodeFinal() : egr::GradNodeBase() {}
  AddNGradNodeFinal(size_t bwd_in_slot_num, size_t bwd_out_slot_num)
      : egr::GradNodeBase(bwd_in_slot_num, bwd_out_slot_num) {}
  ~AddNGradNodeFinal() override = default;

170
  virtual paddle::small_vector<std::vector<paddle::Tensor>,
W
Weilong Wu 已提交
171
                               egr::kSlotSmallVectorSize>
172 173 174 175
  operator()(paddle::small_vector<std::vector<paddle::Tensor>,        // NOLINT
                                  egr::kSlotSmallVectorSize>& grads,  // NOLINT
             bool create_graph = false,
             bool is_new_grad = false) override;
W
Weilong Wu 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
  std::string name() override { return "AddNGradNodeFinal"; }

  void ClearTensorWrappers() override {
    for (auto& tw : x_) {
      tw.clear();
    }

    SetIsTensorWrappersCleared(true);
  }

  std::shared_ptr<GradNodeBase> Copy() const override {
    auto copied_node =
        std::shared_ptr<AddNGradNodeFinal>(new AddNGradNodeFinal(*this));
    return copied_node;
  }

  // SetTensorWrapperX, SetTensorWrapperY, ...
193
  void SetTensorWrapperx(const std::vector<paddle::Tensor>& x) {
W
Weilong Wu 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206
    for (const auto& eager_tensor : x) {
      x_.emplace_back(egr::TensorWrapper(eager_tensor, true));
    }
  }

  // SetAttributes

 private:
  // TensorWrappers
  std::vector<egr::TensorWrapper> x_;

  // Attributes
};
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377

class SyncBatchNormGradNode : public egr::GradNodeBase {
 public:
  SyncBatchNormGradNode() : egr::GradNodeBase() {}
  SyncBatchNormGradNode(size_t bwd_in_slot_num, size_t bwd_out_slot_num)
      : egr::GradNodeBase(bwd_in_slot_num, bwd_out_slot_num) {}
  ~SyncBatchNormGradNode() override = default;

  virtual paddle::small_vector<std::vector<paddle::Tensor>,
                               egr::kSlotSmallVectorSize>
  operator()(paddle::small_vector<std::vector<paddle::Tensor>,
                                  egr::kSlotSmallVectorSize>& grads,  // NOLINT
             bool create_graph = false,
             bool is_new_grad = false) override;
  std::string name() override { return "SyncBatchNormGradNode"; }

  void ClearTensorWrappers() override {
    x_.clear();
    scale_.clear();
    bias_.clear();
    saved_mean_.clear();
    saved_variance_.clear();
    reserve_space_.clear();

    SetIsTensorWrappersCleared(true);
  }

  std::shared_ptr<GradNodeBase> Copy() const override {
    auto copied_node = std::shared_ptr<SyncBatchNormGradNode>(
        new SyncBatchNormGradNode(*this));
    return copied_node;
  }

  // SetTensorWrapperX, SetTensorWrapperY, ...
  void SetTensorWrapperx(const paddle::Tensor& x) {
    x_ = egr::TensorWrapper(x, false);
  }
  void SetTensorWrapperscale(const paddle::Tensor& scale) {
    scale_ = egr::TensorWrapper(scale, false);
  }
  void SetTensorWrapperbias(const paddle::Tensor& bias) {
    bias_ = egr::TensorWrapper(bias, false);
  }
  void SetTensorWrappersaved_mean(const paddle::Tensor& saved_mean) {
    saved_mean_ = egr::TensorWrapper(saved_mean, false);
  }
  void SetTensorWrappersaved_variance(const paddle::Tensor& saved_variance) {
    saved_variance_ = egr::TensorWrapper(saved_variance, false);
  }
  void SetTensorWrapperreserve_space(const paddle::Tensor& reserve_space) {
    reserve_space_ = egr::TensorWrapper(reserve_space, false);
  }

  // SetAttributes
  void SetAttributemomentum(const float& momentum) { momentum_ = momentum; }
  void SetAttributeepsilon(const float& epsilon) { epsilon_ = epsilon; }
  void SetAttributedata_layout(const std::string& data_layout) {
    data_layout_ = data_layout;
  }
  void SetAttributeis_test(const bool& is_test) { is_test_ = is_test; }
  void SetAttributeuse_global_stats(const bool& use_global_stats) {
    use_global_stats_ = use_global_stats;
  }
  void SetAttributetrainable_statistics(const bool& trainable_statistics) {
    trainable_statistics_ = trainable_statistics;
  }

 private:
  // TensorWrappers
  egr::TensorWrapper x_;
  egr::TensorWrapper scale_;
  egr::TensorWrapper bias_;
  egr::TensorWrapper saved_mean_;
  egr::TensorWrapper saved_variance_;
  egr::TensorWrapper reserve_space_;

  // Attributes
  float momentum_;
  float epsilon_;
  std::string data_layout_;
  bool is_test_;
  bool use_global_stats_;
  bool trainable_statistics_;
};

namespace sparse {
class SyncBatchNormGradNode : public egr::GradNodeBase {
 public:
  SyncBatchNormGradNode() : egr::GradNodeBase() {}
  SyncBatchNormGradNode(size_t bwd_in_slot_num, size_t bwd_out_slot_num)
      : egr::GradNodeBase(bwd_in_slot_num, bwd_out_slot_num) {}
  ~SyncBatchNormGradNode() override = default;

  virtual paddle::small_vector<std::vector<paddle::Tensor>,
                               egr::kSlotSmallVectorSize>
  operator()(paddle::small_vector<std::vector<paddle::Tensor>,
                                  egr::kSlotSmallVectorSize>& grads,  // NOLINT
             bool create_graph = false,
             bool is_new_grad = false) override;
  std::string name() override { return "SyncBatchNormGradNode"; }

  void ClearTensorWrappers() override {
    x_.clear();
    scale_.clear();
    bias_.clear();
    saved_mean_.clear();
    saved_variance_.clear();
    reserve_space_.clear();

    SetIsTensorWrappersCleared(true);
  }

  std::shared_ptr<GradNodeBase> Copy() const override {
    auto copied_node = std::shared_ptr<SyncBatchNormGradNode>(
        new SyncBatchNormGradNode(*this));
    return copied_node;
  }

  // SetTensorWrapperX, SetTensorWrapperY, ...
  void SetTensorWrapperx(const paddle::Tensor& x) {
    x_ = egr::TensorWrapper(x, false);
  }
  void SetTensorWrapperscale(const paddle::Tensor& scale) {
    scale_ = egr::TensorWrapper(scale, false);
  }
  void SetTensorWrapperbias(const paddle::Tensor& bias) {
    bias_ = egr::TensorWrapper(bias, false);
  }
  void SetTensorWrappersaved_mean(const paddle::Tensor& saved_mean) {
    saved_mean_ = egr::TensorWrapper(saved_mean, false);
  }
  void SetTensorWrappersaved_variance(const paddle::Tensor& saved_variance) {
    saved_variance_ = egr::TensorWrapper(saved_variance, false);
  }
  void SetTensorWrapperreserve_space(const paddle::Tensor& reserve_space) {
    reserve_space_ = egr::TensorWrapper(reserve_space, false);
  }

  // SetAttributes
  void SetAttributemomentum(const float& momentum) { momentum_ = momentum; }
  void SetAttributeepsilon(const float& epsilon) { epsilon_ = epsilon; }
  void SetAttributedata_layout(const std::string& data_layout) {
    data_layout_ = data_layout;
  }
  void SetAttributeis_test(const bool& is_test) { is_test_ = is_test; }
  void SetAttributeuse_global_stats(const bool& use_global_stats) {
    use_global_stats_ = use_global_stats;
  }
  void SetAttributetrainable_statistics(const bool& trainable_statistics) {
    trainable_statistics_ = trainable_statistics;
  }

 private:
  // TensorWrappers
  egr::TensorWrapper x_;
  egr::TensorWrapper scale_;
  egr::TensorWrapper bias_;
  egr::TensorWrapper saved_mean_;
  egr::TensorWrapper saved_variance_;
  egr::TensorWrapper reserve_space_;

  // Attributes
  float momentum_;
  float epsilon_;
  std::string data_layout_;
  bool is_test_;
  bool use_global_stats_;
  bool trainable_statistics_;
};

}  // namespace sparse