test_min_op.py 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import os
18
import unittest
19
import tempfile
20
import numpy as np
21
from op_test import OpTest, skip_check_grad_ci, check_out_dtype
22 23
import paddle
import paddle.fluid.core as core
24
from paddle.fluid.framework import _test_eager_guard
25 26
import paddle.inference as paddle_infer
from test_sum_op import TestReduceOPTensorAxisBase
27 28 29


class ApiMinTest(unittest.TestCase):
30

31 32 33 34 35 36 37 38 39 40
    def setUp(self):
        if core.is_compiled_with_cuda():
            self.place = core.CUDAPlace(0)
        else:
            self.place = core.CPUPlace()

    def test_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
41
            data = paddle.static.data("data", shape=[10, 10], dtype="float32")
42 43 44 45 46 47 48 49
            result_min = paddle.min(x=data, axis=1)
            exe = paddle.static.Executor(self.place)
            input_data = np.random.rand(10, 10).astype(np.float32)
            res, = exe.run(feed={"data": input_data}, fetch_list=[result_min])
        self.assertEqual((res == np.min(input_data, axis=1)).all(), True)

        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
50
            data = paddle.static.data("data", shape=[10, 10], dtype="int64")
51 52 53 54 55 56
            result_min = paddle.min(x=data, axis=0)
            exe = paddle.static.Executor(self.place)
            input_data = np.random.randint(10, size=(10, 10)).astype(np.int64)
            res, = exe.run(feed={"data": input_data}, fetch_list=[result_min])
        self.assertEqual((res == np.min(input_data, axis=0)).all(), True)

57 58
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
59
            data = paddle.static.data("data", shape=[10, 10], dtype="int64")
60 61 62 63 64 65
            result_min = paddle.min(x=data, axis=(0, 1))
            exe = paddle.static.Executor(self.place)
            input_data = np.random.randint(10, size=(10, 10)).astype(np.int64)
            res, = exe.run(feed={"data": input_data}, fetch_list=[result_min])
        self.assertEqual((res == np.min(input_data, axis=(0, 1))).all(), True)

66 67 68 69 70 71 72 73 74 75 76 77 78 79
    def test_errors(self):
        paddle.enable_static()

        def test_input_type():
            with paddle.static.program_guard(paddle.static.Program(),
                                             paddle.static.Program()):
                data = np.random.rand(10, 10)
                result_min = paddle.min(x=data, axis=0)

        self.assertRaises(TypeError, test_input_type)

    def test_imperative_api(self):
        paddle.disable_static()
        np_x = np.array([10, 10]).astype('float64')
Z
Zhou Wei 已提交
80
        x = paddle.to_tensor(np_x)
81 82 83 84
        z = paddle.min(x, axis=0)
        np_z = z.numpy()
        z_expected = np.array(np.min(np_x, axis=0))
        self.assertEqual((np_z == z_expected).all(), True)
85

86 87 88 89
    def test_eager_api(self):
        with _test_eager_guard():
            self.test_imperative_api()

90 91

class TestOutDtype(unittest.TestCase):
92

93 94 95
    def test_min(self):
        api_fn = paddle.min
        shape = [10, 16]
96 97 98
        check_out_dtype(api_fn,
                        in_specs=[(shape, )],
                        expect_dtypes=['float32', 'float64', 'int32', 'int64'])
99 100


101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
class TestMinWithTensorAxis1(TestReduceOPTensorAxisBase):

    def init_data(self):
        self.pd_api = paddle.min
        self.np_api = np.min
        self.x = paddle.randn([10, 5, 9, 9], dtype='float64')
        self.np_axis = np.array([1, 2], dtype='int64')
        self.tensor_axis = paddle.to_tensor([1, 2], dtype='int64')


class TestMinWithTensorAxis2(TestReduceOPTensorAxisBase):

    def init_data(self):
        self.pd_api = paddle.min
        self.np_api = np.min
        self.x = paddle.randn([10, 10, 9, 9], dtype='float64')
        self.np_axis = np.array([0, 1, 2], dtype='int64')
        self.tensor_axis = [
            0,
            paddle.to_tensor([1], 'int64'),
            paddle.to_tensor([2], 'int64')
        ]
        self.keepdim = True


126 127
if __name__ == '__main__':
    unittest.main()