sum_op.cu 8.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zhaoyuchen2018 已提交
11 12 13

#include <paddle/fluid/platform/device_context.h>
#include "paddle/fluid/framework/op_registry.h"
Y
Yi Wang 已提交
14
#include "paddle/fluid/operators/sum_op.h"
C
chengduo 已提交
15
#include "paddle/fluid/platform/float16.h"
16

Z
zhaoyuchen2018 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
namespace plat = paddle::platform;

namespace paddle {
namespace operators {

#define CEIL_DIV(x, y) (((x) + (y)-1) / (y))

using LoDTensor = framework::LoDTensor;

template <class T>
__global__ void Sum2CUDAKernel(const T *in_0, const T *in_1, T *out,
                               int64_t N) {
  int id = blockIdx.x * blockDim.x + threadIdx.x;
  while (id < N) {
    out[id] = in_0[id] + in_1[id];
    id += blockDim.x * gridDim.x;
  }
}

template <class T>
__global__ void SumArrayCUDAKernel(T **in, T *out, int64_t N, size_t in_size,
                                   bool read_dst) {
  int id = blockIdx.x * blockDim.x + threadIdx.x;
  while (id < N) {
    T total(0);
    for (int i = 0; i < in_size; ++i) {
      const T *tmp = in[i];
      if (tmp) {
        total += tmp[id];
      }
    }
    if (read_dst) {
      out[id] += total;
    } else {
      out[id] = total;
    }
    id += blockDim.x * gridDim.x;
  }
}

template <class T>
__global__ void SumSelectedRowsCUDAKernel(T **sr_in_out, int64_t N,
                                          size_t rows) {
  int id = blockIdx.x * blockDim.x + threadIdx.x;
  while (id < N) {
    for (int i = 0; i < 2 * rows; i += 2) {
      const T *tmp = sr_in_out[i];
      T *tmp_out = sr_in_out[i + 1];
      if (tmp && tmp_out) {
        tmp_out[id] += tmp[id];
      }
    }
    id += blockDim.x * gridDim.x;
  }
}

template <class T>
__global__ void SumAlign4CUDAKernel(const T *in_0, const T *in_1, T *out,
                                    int64_t N) {
  int id = blockIdx.x * blockDim.x + threadIdx.x;
  for (int i = id; i < N / 4; i += blockDim.x * gridDim.x) {
    const float4 *in0_4 = reinterpret_cast<float4 *>(in_0);
    const float4 *in1_4 = reinterpret_cast<float4 *>(in_1);
    float4 tmp;
    tmp.x = in0_4[i].x + in1_4[i].x;
    tmp.y = in0_4[i].y + in1_4[i].y;
    tmp.z = in0_4[i].z + in1_4[i].z;
    tmp.w = in0_4[i].w + in1_4[i].w;
    reinterpret_cast<float4 *>(out)[i] = tmp;
  }
}

template <class T>
void FuseLodTensorSumCompute(const framework::ExecutionContext &context) {
  auto in_vars = context.MultiInputVar("X");
  const size_t in_num = in_vars.size();

  constexpr size_t theory_sm_threads = 1024;
  auto &dev_ctx =
      context.template device_context<platform::CUDADeviceContext>();
  auto stream = dev_ctx.stream();

  auto max_threads = dev_ctx.GetMaxPhysicalThreadCount();
  auto sm_count = max_threads / theory_sm_threads;
  size_t tile_size = 0;
  dim3 grids;
  dim3 blocks;

  auto ComputeKernelParameter = [&](size_t length) {
    if (length >= max_threads)
      tile_size = 1024;
    else if (length < max_threads && length > sm_count * 128)
      tile_size = 512;
    else if (length <= sm_count * 128)
      tile_size = 256;
    grids = dim3(CEIL_DIV(length, tile_size), 1, 1);
    blocks = dim3(tile_size, 1, 1);
  };

  auto *out = context.Output<LoDTensor>("Out");

  auto out_var = context.OutputVar("Out");
  bool in_place = in_vars[0] == out_var;

  if (!in_place) {
    out->mutable_data<T>(context.GetPlace());
  }
  int start = in_place ? 1 : 0;
  if (!in_place) {
    // seperate path for a+b,maybe not fast than eigen
    if (in_num == 2 && in_vars[0]->IsType<framework::LoDTensor>() &&
        in_vars[1]->IsType<framework::LoDTensor>()) {
      auto &in_0 = in_vars[0]->Get<framework::LoDTensor>();
      auto &in_1 = in_vars[1]->Get<framework::LoDTensor>();

      auto length = in_0.numel();
      if (length) {
        ComputeKernelParameter(length);
        Sum2CUDAKernel<T><<<grids, blocks, 0, stream>>>(
            in_0.data<T>(), in_1.data<T>(), out->data<T>(), length);
      }
      return;
    }
  }
  if (!in_place) {
    math::SetConstant<platform::CUDADeviceContext, T> constant_functor;
    constant_functor(
        context.template device_context<platform::CUDADeviceContext>(), out,
        static_cast<T>(0));
  }

  std::vector<const T *> in_data;
  std::vector<int> selectrow_index;
  int64_t lod_length = 0;
  bool dst_write = false;
  for (int i = start; i < in_num; ++i) {
    if (in_vars[i]->IsType<framework::LoDTensor>()) {
      auto &in_i = in_vars[i]->Get<framework::LoDTensor>();
      in_data.emplace_back(in_i.data<T>());
      lod_length = in_i.numel();
    } else if (in_vars[i]->IsType<framework::SelectedRows>()) {
      selectrow_index.push_back(i);
    }
  }

  // compute select rows seperately.
  if (!selectrow_index.empty()) {
    std::vector<const T *> sr_in_out_data;
    size_t rows = 0;
    int64_t length = 0;
    for (auto index : selectrow_index) {
      auto &sr = in_vars[index]->Get<framework::SelectedRows>();
      auto &sr_value = sr.value();
      auto &sr_rows = sr.rows();

      auto row_numel = sr_value.numel() / sr_rows.size();
      auto out_dims = out->dims();

      PADDLE_ENFORCE_EQ(sr.height(), out_dims[0]);
      PADDLE_ENFORCE_EQ(row_numel, out->numel() / sr.height());

      auto *sr_data = sr_value.data<T>();
      auto *sr_out_data = out->data<T>();
      rows += sr_rows.size();
      length = row_numel;

      for (size_t i = 0; i < sr_rows.size(); ++i) {
        sr_in_out_data.emplace_back(&sr_data[i * row_numel]);
        sr_in_out_data.emplace_back(&sr_out_data[sr_rows[i] * row_numel]);
      }
    }
    if (!sr_in_out_data.empty()) {
      auto tmp_sr_in_out_array =
          platform::DeviceTemporaryAllocator::Instance().Get(dev_ctx).Allocate(
              sr_in_out_data.size() * sizeof(T *));

      memory::Copy(boost::get<platform::CUDAPlace>(dev_ctx.GetPlace()),
                   tmp_sr_in_out_array->ptr(), platform::CPUPlace(),
                   reinterpret_cast<void *>(sr_in_out_data.data()),
                   sr_in_out_data.size() * sizeof(T *), dev_ctx.stream());

      T **sr_in_out_array_data =
          reinterpret_cast<T **>(tmp_sr_in_out_array->ptr());

      ComputeKernelParameter(length);
      SumSelectedRowsCUDAKernel<T><<<grids, blocks, 0, stream>>>(
          sr_in_out_array_data, length, rows);
      dst_write = true;
    }
  }
  // if indata not null, merge into one kernel call.
  if (!in_data.empty()) {
    auto tmp_in_array =
        platform::DeviceTemporaryAllocator::Instance().Get(dev_ctx).Allocate(
            in_data.size() * sizeof(T *));

    memory::Copy(boost::get<platform::CUDAPlace>(dev_ctx.GetPlace()),
                 tmp_in_array->ptr(), platform::CPUPlace(),
                 reinterpret_cast<void *>(in_data.data()),
                 in_data.size() * sizeof(T *), dev_ctx.stream());

    T **in_array_data = reinterpret_cast<T **>(tmp_in_array->ptr());
    ComputeKernelParameter(lod_length);
    SumArrayCUDAKernel<T><<<grids, blocks, 0, stream>>>(
        in_array_data, out->data<T>(), lod_length, in_data.size(),
        dst_write | in_place);
  }
}

template <typename T>
class SumKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto in_vars = context.MultiInputVar("X");
    const size_t in_num = in_vars.size();
    auto out_var = context.OutputVar("Out");
    bool in_place = out_var == in_vars[0];

    if (out_var->IsType<framework::LoDTensor>()) {
      FuseLodTensorSumCompute<T>(context);
    } else if (out_var->IsType<framework::SelectedRows>()) {
      SelectedRowsCompute<platform::CUDADeviceContext, T>(context);
    } else if (out_var->IsType<framework::LoDTensorArray>()) {
      LodTensorArrayCompute<platform::CUDADeviceContext, T>(context);
    } else {
      PADDLE_THROW("Unexpected branch, output variable type is %s",
                   framework::ToTypeName(out_var->Type()));
    }
  }
};
}  // namespace operators
}  // namespace paddle

251
namespace ops = paddle::operators;
C
chengduo 已提交
252
namespace plat = paddle::platform;
Q
QI JUN 已提交
253 254 255 256
REGISTER_OP_CUDA_KERNEL(
    sum, ops::SumKernel<paddle::platform::CUDADeviceContext, float>,
    ops::SumKernel<paddle::platform::CUDADeviceContext, double>,
    ops::SumKernel<paddle::platform::CUDADeviceContext, int>,
C
chengduo 已提交
257 258
    ops::SumKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::SumKernel<paddle::platform::CUDADeviceContext, plat::float16>);