elementwise_min_op.h 4.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
F
fengjiayi 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

L
LJQ❤️ 已提交
17
#include <cmath>
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
W
wanghuancoder 已提交
19

F
fengjiayi 已提交
20 21 22 23 24 25 26
namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class ElementwiseMinKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
27 28 29
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto* z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
30 31 32

    z->mutable_data<T>(ctx.GetPlace());
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
33 34
    ElementwiseComputeEx<MinFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          MinFunctor<T>(), z);
F
fengjiayi 已提交
35 36 37 38
  }
};

template <typename T>
C
chengduoZH 已提交
39 40 41
struct MinGradDx {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * (x < y);
F
fengjiayi 已提交
42 43 44 45
  }
};

template <typename T>
C
chengduoZH 已提交
46 47 48
struct MinGradDy {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * (x >= y);
F
fengjiayi 已提交
49 50 51
  }
};

S
sneaxiy 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
#ifdef PADDLE_CUDA_FP16
template <>
struct MinGradDx<platform::float16> {
  HOSTDEVICE platform::float16 operator()(platform::float16 x,
                                          platform::float16 y,
                                          platform::float16 out,
                                          platform::float16 dout) const {
    return x < y ? dout : static_cast<platform::float16>(0);
  }
};

template <>
struct MinGradDy<platform::float16> {
  HOSTDEVICE platform::float16 operator()(platform::float16 x,
                                          platform::float16 y,
                                          platform::float16 out,
                                          platform::float16 dout) const {
    return x >= y ? dout : static_cast<platform::float16>(0);
  }
};
#endif

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
ElementwiseMinGrad(const framework::ExecutionContext& ctx,
                   const framework::Tensor* x, const framework::Tensor* y,
                   const framework::Tensor* out, const framework::Tensor* dout,
                   framework::Tensor* dx, framework::Tensor* dy) {
  int axis = ctx.Attr<int>("axis");
  ElemwiseGradCompute<DeviceContext, T, MinGradDx<T>, MinGradDy<T>>(
      ctx, *x, *y, *out, *dout, axis, dx, dy, MinGradDx<T>(), MinGradDy<T>());
}

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
ElementwiseMinGrad(const framework::ExecutionContext& ctx,
                   const framework::Tensor* x, const framework::Tensor* y,
                   const framework::Tensor* out, const framework::Tensor* dout,
                   framework::Tensor* dx, framework::Tensor* dy);
#endif

F
fengjiayi 已提交
96
template <typename DeviceContext, typename T>
97
class ElementwiseMinGradKernel : public ElemwiseGradKernel<T> {
F
fengjiayi 已提交
98 99
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
100
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
101 102 103 104 105 106 107
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
108
    auto* out = dout;  // Fake out, not used
109
    ElementwiseMinGrad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
F
fengjiayi 已提交
110 111 112 113
  }
};
}  // namespace operators
}  // namespace paddle