sampling_id_op.h 2.8 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

     http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License. */

#pragma once

#include <algorithm>
#include <iostream>
#include <iterator>
#include <random>
#include <sstream>
#include <vector>

24
#include "paddle/fluid/framework/generator.h"
T
tangwei12 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
class SamplingIdKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("X");
    const int batch_size = static_cast<int>(input->dims()[0]);
    const int width = static_cast<int>(input->dims()[1]);

40 41 42 43 44 45 46 47 48
    PADDLE_ENFORCE_GE(
        batch_size, 0,
        platform::errors::InvalidArgument(
            "batch_size(dims[0]) must be nonnegative. but it is %d.",
            batch_size));
    PADDLE_ENFORCE_GE(
        width, 0,
        platform::errors::InvalidArgument(
            "width(dims[1]) must be nonnegative. but it is %d.", width));
T
tangwei12 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62

    std::vector<T> ins_vector;
    framework::TensorToVector(*input, context.device_context(), &ins_vector);

    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
    std::minstd_rand engine;
    if (seed == 0) {
      seed = std::random_device()();
    }
    engine.seed(seed);
    std::uniform_real_distribution<T> dist(
        static_cast<T>(context.Attr<float>("min")),
        static_cast<T>(context.Attr<float>("max")));

Z
zenghsh3 已提交
63
    std::vector<int64_t> ids(batch_size);
Z
refine  
zenghsh3 已提交
64
    for (int i = 0; i < batch_size; ++i) {
65 66 67
      T r = framework::Generator::GetInstance()->is_init_py
                ? dist(framework::Generator::GetInstance()->GetCPUEngine())
                : dist(engine);
T
tangwei12 已提交
68 69 70 71 72 73 74
      int idx = width - 1;
      for (int j = 0; j < width; ++j) {
        if ((r -= ins_vector[i * width + j]) < 0) {
          idx = j;
          break;
        }
      }
Z
zenghsh3 已提交
75
      ids[i] = int64_t(idx);
T
tangwei12 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89
    }

    std::vector<int64_t> out_dim;
    out_dim.push_back(static_cast<int64_t>(batch_size));

    Tensor* output = context.Output<Tensor>("Out");
    output->Resize(framework::make_ddim(out_dim));
    output->mutable_data<T>(context.GetPlace());
    framework::TensorFromVector(ids, context.device_context(), output);
  }
};

}  // namespace operators
}  // namespace paddle