spectral_helper.h 19.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/operators/spectral_op.h"

19 20 21 22
#if defined(PADDLE_WITH_ONEMKL)
#include "paddle/phi/backends/dynload/mklrt.h"
#elif defined(PADDLE_WITH_POCKETFFT)
#include "extern_pocketfft/pocketfft_hdronly.h"
23 24 25 26 27
#endif

namespace paddle {
namespace operators {

28
using Tensor = framework::Tensor;
F
Feiyu Chan 已提交
29

30 31
// FFT Functors
#if defined(PADDLE_WITH_ONEMKL)
F
Feiyu Chan 已提交
32

33 34 35 36 37 38 39
#define MKL_DFTI_CHECK(expr)                                                   \
  do {                                                                         \
    MKL_LONG status = (expr);                                                  \
    if (!phi::dynload::DftiErrorClass(status, DFTI_NO_ERROR))                  \
      PADDLE_THROW(                                                            \
          platform::errors::External(phi::dynload::DftiErrorMessage(status))); \
  } while (0);
40

41 42 43 44 45
struct DftiDescriptorDeleter {
  void operator()(DFTI_DESCRIPTOR_HANDLE handle) {
    if (handle != nullptr) {
      MKL_DFTI_CHECK(phi::dynload::DftiFreeDescriptor(&handle));
    }
46 47 48
  }
};

49 50
// A RAII wrapper for MKL_DESCRIPTOR*
class DftiDescriptor {
51
 public:
52 53 54 55 56 57 58 59 60 61
  void init(DFTI_CONFIG_VALUE precision, DFTI_CONFIG_VALUE signal_type,
            MKL_LONG signal_ndim, MKL_LONG* sizes) {
    PADDLE_ENFORCE_EQ(desc_.get(), nullptr,
                      platform::errors::AlreadyExists(
                          "DftiDescriptor has already been initialized."));

    DFTI_DESCRIPTOR* raw_desc;
    MKL_DFTI_CHECK(phi::dynload::DftiCreateDescriptorX(
        &raw_desc, precision, signal_type, signal_ndim, sizes));
    desc_.reset(raw_desc);
62 63
  }

64 65 66 67 68 69 70
  DFTI_DESCRIPTOR* get() const {
    DFTI_DESCRIPTOR* raw_desc = desc_.get();
    PADDLE_ENFORCE_NOT_NULL(raw_desc,
                            platform::errors::PreconditionNotMet(
                                "DFTI DESCRIPTOR has not been initialized."));
    return raw_desc;
  }
71 72

 private:
73
  std::unique_ptr<DFTI_DESCRIPTOR, DftiDescriptorDeleter> desc_;
74 75
};

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
static DftiDescriptor _plan_mkl_fft(
    const framework::proto::VarType::Type& in_dtype,
    const framework::proto::VarType::Type& out_dtype,
    const framework::DDim& in_strides, const framework::DDim& out_strides,
    const std::vector<int>& signal_sizes, FFTNormMode normalization,
    bool forward) {
  const DFTI_CONFIG_VALUE precision = [&] {
    switch (in_dtype) {
      case framework::proto::VarType::FP32:
        return DFTI_SINGLE;
      case framework::proto::VarType::COMPLEX64:
        return DFTI_SINGLE;
      case framework::proto::VarType::FP64:
        return DFTI_DOUBLE;
      case framework::proto::VarType::COMPLEX128:
        return DFTI_DOUBLE;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid input datatype (%s), input data type should be FP32, "
            "FP64, COMPLEX64 or COMPLEX128.",
            framework::DataTypeToString(in_dtype)));
    }
  }();

  // C2C, R2C, C2R
  const FFTTransformType fft_type = GetFFTTransformType(in_dtype, out_dtype);
  const DFTI_CONFIG_VALUE domain =
      (fft_type == FFTTransformType::C2C) ? DFTI_COMPLEX : DFTI_REAL;

  DftiDescriptor descriptor;
  std::vector<MKL_LONG> fft_sizes(signal_sizes.cbegin(), signal_sizes.cend());
  const MKL_LONG signal_ndim = fft_sizes.size() - 1;
  descriptor.init(precision, domain, signal_ndim, fft_sizes.data() + 1);

  // placement inplace or not inplace
  MKL_DFTI_CHECK(phi::dynload::DftiSetValue(descriptor.get(), DFTI_PLACEMENT,
                                            DFTI_NOT_INPLACE));

  // number of transformations
  const MKL_LONG batch_size = fft_sizes[0];
  MKL_DFTI_CHECK(phi::dynload::DftiSetValue(
      descriptor.get(), DFTI_NUMBER_OF_TRANSFORMS, batch_size));

  // input & output distance
  const MKL_LONG idist = in_strides[0];
  const MKL_LONG odist = out_strides[0];
  MKL_DFTI_CHECK(
      phi::dynload::DftiSetValue(descriptor.get(), DFTI_INPUT_DISTANCE, idist));
  MKL_DFTI_CHECK(phi::dynload::DftiSetValue(descriptor.get(),
                                            DFTI_OUTPUT_DISTANCE, odist));

  // input & output stride
  std::vector<MKL_LONG> mkl_in_stride(1 + signal_ndim, 0);
  std::vector<MKL_LONG> mkl_out_stride(1 + signal_ndim, 0);
  for (MKL_LONG i = 1; i <= signal_ndim; i++) {
    mkl_in_stride[i] = in_strides[i];
    mkl_out_stride[i] = out_strides[i];
133
  }
134 135 136 137 138 139 140 141 142
  MKL_DFTI_CHECK(phi::dynload::DftiSetValue(
      descriptor.get(), DFTI_INPUT_STRIDES, mkl_in_stride.data()));
  MKL_DFTI_CHECK(phi::dynload::DftiSetValue(
      descriptor.get(), DFTI_OUTPUT_STRIDES, mkl_out_stride.data()));

  // conjugate even storage
  if (!(fft_type == FFTTransformType::C2C)) {
    MKL_DFTI_CHECK(phi::dynload::DftiSetValue(
        descriptor.get(), DFTI_CONJUGATE_EVEN_STORAGE, DFTI_COMPLEX_COMPLEX));
143
  }
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

  MKL_LONG signal_numel =
      std::accumulate(fft_sizes.cbegin() + 1, fft_sizes.cend(), 1UL,
                      std::multiplies<MKL_LONG>());
  if (normalization != FFTNormMode::none) {
    const double scale =
        ((normalization == FFTNormMode::by_sqrt_n)
             ? 1.0 / std::sqrt(static_cast<double>(signal_numel))
             : 1.0 / static_cast<double>(signal_numel));
    const auto scale_direction = [&]() {
      if (fft_type == FFTTransformType::R2C ||
          (fft_type == FFTTransformType::C2C && forward)) {
        return DFTI_FORWARD_SCALE;
      } else {
        // (fft_type == FFTTransformType::C2R ||
        //          (fft_type == FFTTransformType::C2C && !forward))
        return DFTI_BACKWARD_SCALE;
161 162
      }
    }();
163 164
    MKL_DFTI_CHECK(
        phi::dynload::DftiSetValue(descriptor.get(), scale_direction, scale));
165 166
  }

167 168 169 170
  // commit the descriptor
  MKL_DFTI_CHECK(phi::dynload::DftiCommitDescriptor(descriptor.get()));
  return descriptor;
}
171

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
// Execute a general fft operation (can be c2c, onesided r2c or onesided c2r)
template <typename DeviceContext, typename Ti, typename To>
void exec_fft(const DeviceContext& ctx, const Tensor* x, Tensor* out,
              const std::vector<int64_t>& axes, FFTNormMode normalization,
              bool forward) {
  const framework::DDim& in_sizes = x->dims();
  const int ndim = in_sizes.size();
  const int signal_ndim = axes.size();
  const int batch_ndim = ndim - signal_ndim;
  const framework::DDim& out_sizes = out->dims();

  // make a dim permutation
  std::vector<int> dim_permute(ndim);
  std::iota(dim_permute.begin(), dim_permute.end(), 0);
  std::vector<bool> is_transformed_dim(ndim, false);
  for (const auto& d : axes) {
    is_transformed_dim[d] = true;
  }
  const auto batch_end =
      std::partition(dim_permute.begin(), dim_permute.end(),
                     [&](size_t axis) { return !is_transformed_dim[axis]; });
  std::copy(axes.cbegin(), axes.cend(), batch_end);

  // transpose input according to that permutation
  framework::DDim transposed_input_shape = in_sizes.transpose(dim_permute);
  std::vector<int64_t> transposed_input_shape_ =
      phi::vectorize(transposed_input_shape);
  framework::Tensor transposed_input;
  transposed_input.Resize(transposed_input_shape);
  const auto place = ctx.GetPlace();
  transposed_input.mutable_data<Ti>(place);
  TransCompute<platform::CPUDeviceContext, Ti>(ndim, ctx, *x, &transposed_input,
                                               dim_permute);

  // make an collapsed input: collapse batch axes for input
  const int batch_size = std::accumulate(
      transposed_input_shape.Get(), transposed_input_shape.Get() + batch_ndim,
      1L, std::multiplies<int64_t>());
  std::vector<int> collapsed_input_shape_(1 + signal_ndim);
  collapsed_input_shape_[0] = batch_size;
  std::copy(transposed_input_shape_.begin() + batch_ndim,
            transposed_input_shape_.end(), collapsed_input_shape_.begin() + 1);
  const framework::DDim collapsed_input_shape =
      phi::make_ddim(collapsed_input_shape_);
  transposed_input.Resize(collapsed_input_shape);
  framework::Tensor& collapsed_input = transposed_input;

  // make a collapsed output
  std::vector<int> collapsed_output_shape_(1 + signal_ndim);
  collapsed_output_shape_[0] = batch_size;
  for (int i = 0; i < signal_ndim; i++) {
    collapsed_output_shape_[1 + i] = out_sizes[axes[i]];
  }
  const framework::DDim collapsed_output_shape =
      phi::make_ddim(collapsed_output_shape_);
  framework::Tensor collapsed_output;
  collapsed_output.Resize(collapsed_output_shape);
  collapsed_output.mutable_data(place, out->type());

  // signal sizes
  std::vector<int> signal_sizes(1 + signal_ndim);
  signal_sizes[0] = batch_size;
  for (int i = 0; i < signal_ndim; i++) {
    signal_sizes[1 + i] =
        std::max(collapsed_input_shape[1 + i], collapsed_output_shape[1 + i]);
  }
F
Feiyu Chan 已提交
238

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
  // input & output stride
  const framework::DDim input_stride = phi::stride(collapsed_input_shape);
  const framework::DDim output_stride = phi::stride(collapsed_output_shape);

  // make a DFTI_DESCRIPTOR
  DftiDescriptor desc =
      _plan_mkl_fft(framework::TransToProtoVarType(x->dtype()),
                    framework::TransToProtoVarType(out->dtype()), input_stride,
                    output_stride, signal_sizes, normalization, forward);

  const FFTTransformType fft_type =
      GetFFTTransformType(framework::TransToProtoVarType(x->dtype()),
                          framework::TransToProtoVarType(out->type()));
  if (fft_type == FFTTransformType::C2R && forward) {
    framework::Tensor collapsed_input_conj(collapsed_input.dtype());
    collapsed_input_conj.mutable_data<Ti>(collapsed_input.dims(),
                                          ctx.GetPlace());
    // conjugate the input
    platform::ForRange<DeviceContext> for_range(ctx, collapsed_input.numel());
    phi::funcs::ConjFunctor<Ti> functor(collapsed_input.data<Ti>(),
                                        collapsed_input.numel(),
                                        collapsed_input_conj.data<Ti>());
    for_range(functor);
    MKL_DFTI_CHECK(phi::dynload::DftiComputeBackward(
        desc.get(), collapsed_input_conj.data(), collapsed_output.data()));
  } else if (fft_type == FFTTransformType::R2C && !forward) {
    framework::Tensor collapsed_output_conj(collapsed_output.dtype());
    collapsed_output_conj.mutable_data<To>(collapsed_output.dims(),
                                           ctx.GetPlace());
    MKL_DFTI_CHECK(phi::dynload::DftiComputeForward(
        desc.get(), collapsed_input.data(), collapsed_output_conj.data()));
    // conjugate the output
    platform::ForRange<DeviceContext> for_range(ctx, collapsed_output.numel());
    phi::funcs::ConjFunctor<To> functor(collapsed_output_conj.data<To>(),
                                        collapsed_output.numel(),
                                        collapsed_output.data<To>());
    for_range(functor);
  } else {
    if (forward) {
      MKL_DFTI_CHECK(phi::dynload::DftiComputeForward(
          desc.get(), collapsed_input.data(), collapsed_output.data()));
    } else {
      MKL_DFTI_CHECK(phi::dynload::DftiComputeBackward(
          desc.get(), collapsed_input.data(), collapsed_output.data()));
F
Feiyu Chan 已提交
283 284 285
    }
  }

286 287 288 289
  // resize for the collapsed output
  framework::DDim transposed_output_shape = out_sizes.transpose(dim_permute);
  collapsed_output.Resize(transposed_output_shape);
  framework::Tensor& transposed_output = collapsed_output;
F
Feiyu Chan 已提交
290

291 292 293 294
  // reverse the transposition
  std::vector<int> reverse_dim_permute(ndim);
  for (int i = 0; i < ndim; i++) {
    reverse_dim_permute[dim_permute[i]] = i;
F
Feiyu Chan 已提交
295
  }
296 297 298
  TransCompute<platform::CPUDeviceContext, To>(ndim, ctx, transposed_output,
                                               out, reverse_dim_permute);
}
F
Feiyu Chan 已提交
299

300 301 302 303 304 305 306
template <typename Ti, typename To>
struct FFTC2CFunctor<platform::CPUDeviceContext, Ti, To> {
  void operator()(const platform::CPUDeviceContext& ctx, const Tensor* x,
                  Tensor* out, const std::vector<int64_t>& axes,
                  FFTNormMode normalization, bool forward) {
    exec_fft<platform::CPUDeviceContext, Ti, To>(ctx, x, out, axes,
                                                 normalization, forward);
F
Feiyu Chan 已提交
307
  }
308
};
F
Feiyu Chan 已提交
309

310 311 312 313 314 315 316 317 318
template <typename Ti, typename To>
struct FFTR2CFunctor<platform::CPUDeviceContext, Ti, To> {
  void operator()(const platform::CPUDeviceContext& ctx, const Tensor* x,
                  Tensor* out, const std::vector<int64_t>& axes,
                  FFTNormMode normalization, bool forward) {
    exec_fft<platform::CPUDeviceContext, Ti, To>(ctx, x, out, axes,
                                                 normalization, forward);
  }
};
F
Feiyu Chan 已提交
319

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
template <typename Ti, typename To>
struct FFTC2RFunctor<platform::CPUDeviceContext, Ti, To> {
  void operator()(const platform::CPUDeviceContext& ctx, const Tensor* x,
                  Tensor* out, const std::vector<int64_t>& axes,
                  FFTNormMode normalization, bool forward) {
    if (axes.size() > 1) {
      const std::vector<int64_t> c2c_dims(axes.begin(), axes.end() - 1);
      Tensor temp;
      temp.mutable_data<Ti>(x->dims(), ctx.GetPlace());

      FFTC2CFunctor<platform::CPUDeviceContext, Ti, Ti> c2c_functor;
      c2c_functor(ctx, x, &temp, c2c_dims, normalization, forward);

      const std::vector<int64_t> new_axes{axes.back()};
      exec_fft<platform::CPUDeviceContext, Ti, To>(ctx, &temp, out, new_axes,
                                                   normalization, forward);
    } else {
      exec_fft<platform::CPUDeviceContext, Ti, To>(ctx, x, out, axes,
                                                   normalization, forward);
F
Feiyu Chan 已提交
339 340
    }
  }
341 342 343 344 345 346 347 348 349 350 351 352 353
};
#elif defined(PADDLE_WITH_POCKETFFT)

template <typename T>
T compute_factor(int64_t size, FFTNormMode normalization) {
  constexpr auto one = static_cast<T>(1);
  switch (normalization) {
    case FFTNormMode::none:
      return one;
    case FFTNormMode::by_n:
      return one / static_cast<T>(size);
    case FFTNormMode::by_sqrt_n:
      return one / std::sqrt(static_cast<T>(size));
F
Feiyu Chan 已提交
354
  }
355 356 357
  PADDLE_THROW(
      platform::errors::InvalidArgument("Unsupported normalization type"));
}
F
Feiyu Chan 已提交
358

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
template <typename Ti, typename To>
struct FFTC2CFunctor<platform::CPUDeviceContext, Ti, To> {
  void operator()(const platform::CPUDeviceContext& ctx, const Tensor* x,
                  Tensor* out, const std::vector<int64_t>& axes,
                  FFTNormMode normalization, bool forward) {
    using R = typename Ti::value_type;
    using C = std::complex<R>;

    const auto& input_dim = x->dims();
    const std::vector<size_t> in_sizes = phi::vectorize<size_t>(input_dim);
    std::vector<std::ptrdiff_t> in_strides =
        phi::vectorize<std::ptrdiff_t>(phi::stride(input_dim));
    const int64_t data_size = sizeof(C);
    std::transform(in_strides.begin(), in_strides.end(), in_strides.begin(),
                   [&](std::ptrdiff_t s) { return s * data_size; });

    const auto* in_data = reinterpret_cast<const C*>(x->data<Ti>());
    auto* out_data = reinterpret_cast<C*>(out->data<To>());
    // pocketfft requires std::vector<size_t>
    std::vector<size_t> axes_(axes.size());
    std::copy(axes.begin(), axes.end(), axes_.begin());
    // compuet factor
    int64_t signal_numel = 1;
    for (auto i : axes) {
      signal_numel *= in_sizes[i];
F
Feiyu Chan 已提交
384
    }
385 386 387
    R factor = compute_factor<R>(signal_numel, normalization);
    pocketfft::c2c(in_sizes, in_strides, in_strides, axes_, forward, in_data,
                   out_data, factor);
F
Feiyu Chan 已提交
388
  }
389
};
F
Feiyu Chan 已提交
390

391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
template <typename Ti, typename To>
struct FFTR2CFunctor<platform::CPUDeviceContext, Ti, To> {
  void operator()(const platform::CPUDeviceContext& ctx, const Tensor* x,
                  Tensor* out, const std::vector<int64_t>& axes,
                  FFTNormMode normalization, bool forward) {
    using R = Ti;
    using C = std::complex<R>;

    const auto& input_dim = x->dims();
    const std::vector<size_t> in_sizes = phi::vectorize<size_t>(input_dim);
    std::vector<std::ptrdiff_t> in_strides =
        phi::vectorize<std::ptrdiff_t>(phi::stride(input_dim));
    {
      const int64_t data_size = sizeof(R);
      std::transform(in_strides.begin(), in_strides.end(), in_strides.begin(),
                     [&](std::ptrdiff_t s) { return s * data_size; });
    }
F
Feiyu Chan 已提交
408

409 410 411 412 413 414 415 416 417 418
    const auto& output_dim = out->dims();
    const std::vector<size_t> out_sizes = phi::vectorize<size_t>(output_dim);
    std::vector<std::ptrdiff_t> out_strides =
        phi::vectorize<std::ptrdiff_t>(phi::stride(output_dim));
    {
      const int64_t data_size = sizeof(C);
      std::transform(out_strides.begin(), out_strides.end(),
                     out_strides.begin(),
                     [&](std::ptrdiff_t s) { return s * data_size; });
    }
F
Feiyu Chan 已提交
419

420 421 422 423 424 425 426 427 428 429 430 431 432
    const auto* in_data = x->data<R>();
    auto* out_data = reinterpret_cast<C*>(out->data<To>());
    // pocketfft requires std::vector<size_t>
    std::vector<size_t> axes_(axes.size());
    std::copy(axes.begin(), axes.end(), axes_.begin());
    // compuet normalization factor
    int64_t signal_numel = 1;
    for (auto i : axes) {
      signal_numel *= in_sizes[i];
    }
    R factor = compute_factor<R>(signal_numel, normalization);
    pocketfft::r2c(in_sizes, in_strides, out_strides, axes_, forward, in_data,
                   out_data, factor);
F
Feiyu Chan 已提交
433 434 435
  }
};

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
template <typename Ti, typename To>
struct FFTC2RFunctor<platform::CPUDeviceContext, Ti, To> {
  void operator()(const platform::CPUDeviceContext& ctx, const Tensor* x,
                  Tensor* out, const std::vector<int64_t>& axes,
                  FFTNormMode normalization, bool forward) {
    using R = To;
    using C = std::complex<R>;

    const auto& input_dim = x->dims();
    const std::vector<size_t> in_sizes = phi::vectorize<size_t>(input_dim);
    std::vector<std::ptrdiff_t> in_strides =
        phi::vectorize<std::ptrdiff_t>(phi::stride(input_dim));
    {
      const int64_t data_size = sizeof(C);
      std::transform(in_strides.begin(), in_strides.end(), in_strides.begin(),
                     [&](std::ptrdiff_t s) { return s * data_size; });
    }
F
Feiyu Chan 已提交
453

454 455 456 457 458 459 460 461 462 463
    const auto& output_dim = out->dims();
    const std::vector<size_t> out_sizes = phi::vectorize<size_t>(output_dim);
    std::vector<std::ptrdiff_t> out_strides =
        phi::vectorize<std::ptrdiff_t>(phi::stride(output_dim));
    {
      const int64_t data_size = sizeof(R);
      std::transform(out_strides.begin(), out_strides.end(),
                     out_strides.begin(),
                     [&](std::ptrdiff_t s) { return s * data_size; });
    }
F
Feiyu Chan 已提交
464

465 466 467 468 469 470 471 472 473 474 475 476 477
    const auto* in_data = reinterpret_cast<const C*>(x->data<Ti>());
    auto* out_data = out->data<R>();
    // pocketfft requires std::vector<size_t>
    std::vector<size_t> axes_(axes.size());
    std::copy(axes.begin(), axes.end(), axes_.begin());
    // compuet normalization factor
    int64_t signal_numel = 1;
    for (auto i : axes) {
      signal_numel *= out_sizes[i];
    }
    R factor = compute_factor<R>(signal_numel, normalization);
    pocketfft::c2r(out_sizes, in_strides, out_strides, axes_, forward, in_data,
                   out_data, factor);
F
Feiyu Chan 已提交
478
  }
479
};
F
Feiyu Chan 已提交
480

481
#endif
F
Feiyu Chan 已提交
482

483 484
}  // namespace operators
}  // namespace paddle