deformable_conv_v1_op.cc 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
16 17 18 19
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/multiary.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

namespace paddle {
namespace operators {
class DeformableConvV1OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Input",
             "(Tensor) The input of deformable conv op. "
             "The shape of input is "
             "[N, channel_in, H, W]");
    AddInput("Offset",
             "(Tensor) The input offset. "
             "The shape of the offset is "
             "[N, deformable_groups * kernel_w * kernel_h * 2, H, W");
    AddInput("Filter",
             "(Tensor) The Input Filter "
             "The shape of the wight is "
             "[num_filters, channel_in, kernel_h, kernel_w.");
    AddOutput("Output",
              "(Tensor) The output. "
              "The shape of the output tensor is "
              "[N, num_filters, out_height, out_width]].");
    AddAttr<std::vector<int>>("strides",
                              "(vector<int> default:{1, 1}), the "
                              "strides(h_stride, w_stride) of "
                              "convolution operator.")
        .SetDefault({1, 1});
    AddAttr<std::vector<int>>("paddings",
                              "(vector<int> default:{0,0}), the "
                              "paddings(h_pad, w_pad) of "
                              "convolution operator. ")
        .SetDefault({0, 0});
    AddAttr<std::vector<int>>("dilations",
                              "(vector<int> default:{1, 1}), the "
                              "dilations(h_dilation, w_dilation) of "
                              "convolution operator.")
        .SetDefault({1, 1});
    AddAttr<int>(
        "groups",
        "(int default:1), the groups number of the convolution operator. "
        "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
        "when group=2, the first half of the filters is only connected to the "
        "first half of the input channels, while the second half of the "
        "filters "
        "is only connected to the second half of the input channels.")
        .SetDefault(1);
    AddAttr<int>("deformable_groups",
                 "(int default:1), the number of the deformable groups.")
        .SetDefault(1);
    AddAttr<int>("im2col_step",
                 "im2col maximum number of image per computation")
        .SetDefault(64);
    AddComment(R"DOC(
**Deformable Convolution v1 Operator**

Deformable Convolution is a new method based Convolution which feature has offset 
in spatial location.

1. Get offset of each pixel in feature map with convolution layers which number 
   of channels should be double of weight size.

2. Add offset to pixel to get new location and the new value which are computed 
   directly through bilinear interpolation with four nearest pixel.

3. Get the product of pixel and weight as result

Compute 2-D deformable convolution on 4-D input.

Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:

$$
y(p) = \\sum_{k=1}^{K}{w_k * x(p + p_k + \\Delta p_k)}
$$

Where $$\\Delta p_k$$ is the learnable offset for the k-th location, respectively.

Refer to 'https://arxiv.org/abs/1703.06211 '<https://arxiv.org/abs/1703.06211>

Example:
  Input:
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
       Offset shape: $(N, 2 * deformable_groups, * H_f * W_f, H_{out}, W_{out})$
  Output:
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
                     where $H_{out}, W_{out}$ must be equal to $H_{in}, W_{in}$ respectively.
  Where
$$
       H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
)DOC");
  }
};

class DeformableConvV1Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
122 123 124
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        ctx.device_context());
125 126 127
  }
};

H
hong 已提交
128 129
template <typename T>
class DeformableConvV1GradOpMaker : public framework::SingleGradOpMaker<T> {
130
 public:
H
hong 已提交
131
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
132 133

 protected:
134
  void Apply(GradOpPtr<T> op) const override {
135
    op->SetType("deformable_conv_v1_grad");
H
hong 已提交
136 137 138 139
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("Offset", this->Input("Offset"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
140

H
hong 已提交
141 142 143
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
    op->SetOutput(framework::GradVarName("Offset"), this->InputGrad("Offset"));
144

H
hong 已提交
145
    op->SetAttrMap(this->Attrs());
146 147 148 149 150 151 152 153 154 155 156 157
  }
};

class DeformableConvV1GradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    auto in_dims = ctx->GetInputDim("Input");
    auto filter_dims = ctx->GetInputDim("Filter");
    auto offset_dims = ctx->GetInputDim("Offset");

158 159
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Output")), "Input",
                   "Output@Grad", "deformable_conv_v1_grad");
160 161 162 163 164 165 166 167 168 169 170 171 172 173
    if (ctx->HasOutput(framework::GradVarName("Input"))) {
      ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
    }
    if (ctx->HasOutput(framework::GradVarName("Filter"))) {
      ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
    }
    if (ctx->HasOutput(framework::GradVarName("Offset"))) {
      ctx->SetOutputDim(framework::GradVarName("Offset"), offset_dims);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
174 175 176
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        ctx.device_context());
177 178 179 180 181 182
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
183 184 185
DECLARE_INFER_SHAPE_FUNCTOR(deformable_conv, DeformableConvV1InferShapeFunctor,
                            PD_INFER_META(phi::DeformableConvInferMeta));

186 187
REGISTER_OPERATOR(deformable_conv_v1, ops::DeformableConvV1Op,
                  ops::DeformableConvV1OpMaker,
H
hong 已提交
188
                  ops::DeformableConvV1GradOpMaker<paddle::framework::OpDesc>,
189 190
                  ops::DeformableConvV1GradOpMaker<paddle::imperative::OpBase>,
                  DeformableConvV1InferShapeFunctor);
191
REGISTER_OPERATOR(deformable_conv_v1_grad, ops::DeformableConvV1GradOp);