MKLDNNPoolLayer.cpp 6.2 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "MKLDNNPoolLayer.h"
16
#include "paddle/math/MathUtils.h"
T
tensor-tang 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#include "paddle/utils/Logging.h"

using namespace mkldnn;  // NOLINT
typedef memory::format format;

namespace paddle {

REGISTER_LAYER(mkldnn_pool, MKLDNNPoolLayer);

bool MKLDNNPoolLayer::init(const LayerMap& layerMap,
                           const ParameterMap& parameterMap) {
  if (!MKLDNNLayer::init(layerMap, parameterMap)) {
    return false;
  }

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
  /* the size of inputs for pool-layer is 1 */
  CHECK_EQ(config_.inputs_size(), 1);
  const PoolConfig& conf = config_.inputs(0).pool_conf();
  ic_ = conf.channels();
  ih_ = conf.img_size_y();
  iw_ = conf.img_size();
  oc_ = ic_;
  oh_ = conf.output_y();
  ow_ = conf.output_x();
  fh_ = conf.size_y();
  fw_ = conf.size_x();
  ph_ = conf.padding_y();
  pw_ = conf.padding();
  sh_ = conf.stride_y();
  sw_ = conf.stride();

  const std::string& type = conf.pool_type();
  if (type == "max-projection") {
    poolAlgo_ = algorithm::pooling_max;
  } else if (type == "avg-projection") {
52 53
    // paddle only use exclude_padding
    poolAlgo_ = algorithm::pooling_avg_exclude_padding;
54 55 56
  } else {
    LOG(FATAL) << "unknow pooling type!";
  }
T
tensor-tang 已提交
57 58 59 60
  return true;
}

void MKLDNNPoolLayer::reshape(
61
    int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) {
T
tensor-tang 已提交
62
  reshapeInput(bs, ih, iw);
63 64 65
  // ic_ and oc can not be changed
  CHECK_EQ(inputElemenCnt_ / bs / ih / iw, (size_t)ic)
      << "Input channel can not be changed";
T
tensor-tang 已提交
66 67

  // cal output sizes
68 69 70
  // paddle used false caffeMode for pooling
  oh = outputSize(ih, fh_, ph_, sh_, false);
  ow = outputSize(iw, fw_, pw_, sw_, false);
T
tensor-tang 已提交
71
  reshapeOutput(oh, ow);
72

T
tensor-tang 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  resizeOutput(bs, oc * oh * ow);
}

void MKLDNNPoolLayer::resetFwd(std::vector<primitive>& pipeline,
                               MKLDNNMatrixPtr& in,
                               MKLDNNMatrixPtr& out) {
  resetFwdBuffers(in, out);

  resetFwdPD(fwdPD_, in, out);

  resetFwdPipeline(pipeline, fwdPD_, in, out);
}

void MKLDNNPoolLayer::resetBwd(std::vector<primitive>& pipeline,
                               MKLDNNMatrixPtr& in,
                               MKLDNNMatrixPtr& out) {
  std::shared_ptr<pool_bwd::primitive_desc> pd;

  resetBwdBuffers(in, out);

  resetBwdPD(pd, in, out);

  resetBwdPipeline(pipeline, pd, in, out);
}

void MKLDNNPoolLayer::resetFwdBuffers(MKLDNNMatrixPtr& in,
                                      MKLDNNMatrixPtr& out) {
  resetInValue(in);
101 102

  memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
103 104 105 106
  CHECK(in);
  auto outPD =
      MKLDNNMatrix::createPrimitiveDesc(outDims, in->getFormat(), engine_);
  resetOutValue(out, outPD);
107
}
T
tensor-tang 已提交
108 109 110

void MKLDNNPoolLayer::resetFwdPD(std::shared_ptr<pool_fwd::primitive_desc>& pd,
                                 MKLDNNMatrixPtr in,
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
                                 MKLDNNMatrixPtr out) {
  memory::dims kernels = memory::dims{fh_, fw_};
  memory::dims strides = memory::dims{sh_, sw_};
  memory::dims padL = memory::dims{ph_, pw_};
  memory::dims padR = getPaddingR();
  padding_kind padKind = padding_kind::zero;
  prop_kind pk = passType_ == PASS_TEST ? prop_kind::forward_scoring
                                        : prop_kind::forward_training;
  auto fwdDesc = pool_fwd::desc(pk,
                                poolAlgo_,
                                in->getMemoryDesc(),
                                out->getMemoryDesc(),
                                strides,
                                kernels,
                                padL,
                                padR,
                                padKind);
  pd.reset(new pool_fwd::primitive_desc(fwdDesc, engine_));

  // prepare workspace if necessary
  workspace_ =
      (passType_ != PASS_TEST && poolAlgo_ == algorithm::pooling_max)
          ? std::make_shared<memory>(memory(pd->workspace_primitive_desc()))
          : nullptr;
}
T
tensor-tang 已提交
136 137

void MKLDNNPoolLayer::resetFwdPipeline(
138
    std::vector<primitive>& pipeline,
T
tensor-tang 已提交
139 140
    std::shared_ptr<pool_fwd::primitive_desc>& pd,
    MKLDNNMatrixPtr& in,
141 142 143 144 145 146
    MKLDNNMatrixPtr& out) {
  fwd_ = workspace_
             ? std::make_shared<pool_fwd>(pool_fwd(*pd, *in, *out, *workspace_))
             : std::make_shared<pool_fwd>(pool_fwd(*pd, *in, *out));
  pipeline.push_back(*fwd_);
}
T
tensor-tang 已提交
147 148 149

void MKLDNNPoolLayer::resetBwdBuffers(MKLDNNMatrixPtr& in,
                                      MKLDNNMatrixPtr& out) {
150 151 152
  CHECK(inVal_ && outVal_);
  resetOutGrad(out, outVal_->getPrimitiveDesc());
  resetInGrad(in, inVal_->getPrimitiveDesc());
153
}
T
tensor-tang 已提交
154 155 156

void MKLDNNPoolLayer::resetBwdPD(std::shared_ptr<pool_bwd::primitive_desc>& pd,
                                 MKLDNNMatrixPtr& in,
157
                                 MKLDNNMatrixPtr& out) {
158 159 160 161
  pd = nullptr;
  if (in == nullptr) {
    return;
  }
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
  memory::dims kernels = memory::dims{fh_, fw_};
  memory::dims strides = memory::dims{sh_, sw_};
  memory::dims padL = memory::dims{ph_, pw_};
  memory::dims padR = getPaddingR();
  CHECK(out);
  auto bwdDesc = pool_bwd::desc(poolAlgo_,
                                in->getMemoryDesc(),
                                out->getMemoryDesc(),
                                strides,
                                kernels,
                                padL,
                                padR,
                                padding_kind::zero);
  pd.reset(new pool_bwd::primitive_desc(bwdDesc, engine_, *fwdPD_));
}
T
tensor-tang 已提交
177 178

void MKLDNNPoolLayer::resetBwdPipeline(
179
    std::vector<primitive>& pipeline,
T
tensor-tang 已提交
180 181
    std::shared_ptr<pool_bwd::primitive_desc>& pd,
    MKLDNNMatrixPtr& in,
182
    MKLDNNMatrixPtr& out) {
183 184
  if (pd == nullptr) {
    return;
185 186 187 188 189 190 191 192
  }

  bwdData_ =
      workspace_
          ? std::make_shared<pool_bwd>(pool_bwd(*pd, *out, *workspace_, *in))
          : std::make_shared<pool_bwd>(pool_bwd(*pd, *out, *in));
  pipeline.push_back(*bwdData_);
}
T
tensor-tang 已提交
193 194

}  // namespace paddle