example.cc 3.4 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <time.h>
#include <iostream>
17
#include "gflags/gflags.h"
18 19 20
#include "paddle/framework/init.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/inference/io.h"
21

22 23 24 25
DEFINE_string(dirname, "", "Directory of the inference model.");

int main(int argc, char** argv) {
  google::ParseCommandLineFlags(&argc, &argv, true);
26
  if (FLAGS_dirname.empty()) {
27 28
    // Example:
    //   ./example --dirname=recognize_digits_mlp.inference.model
29
    std::cout << "Usage: ./example --dirname=path/to/your/model" << std::endl;
30 31 32
    exit(1);
  }

33 34 35 36 37 38
  // 1. Define place, executor, scope
  auto place = paddle::platform::CPUPlace();
  paddle::framework::InitDevices();
  auto* executor = new paddle::framework::Executor(place);
  auto* scope = new paddle::framework::Scope();

39 40 41
  std::cout << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
  std::string dirname = FLAGS_dirname;

42 43 44 45 46 47 48 49 50 51
  // 2. Initialize the inference program
  auto* inference_program = paddle::inference::Load(*executor, *scope, dirname);

  // 3. Optional: perform optimization on the inference_program

  // 4. Get the feed_var_names and fetch_var_names
  const std::vector<std::string>& feed_var_names =
      inference_program->GetFeedVarNames();
  const std::vector<std::string>& fetch_var_names =
      inference_program->GetFetchVarNames();
52

53
  // 5. Generate input
54 55 56 57 58 59 60 61 62 63 64 65
  paddle::framework::LoDTensor input;
  srand(time(0));
  float* input_ptr =
      input.mutable_data<float>({1, 784}, paddle::platform::CPUPlace());
  for (int i = 0; i < 784; ++i) {
    input_ptr[i] = rand() / (static_cast<float>(RAND_MAX));
  }

  std::vector<paddle::framework::LoDTensor> feeds;
  feeds.push_back(input);
  std::vector<paddle::framework::LoDTensor> fetchs;

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
  // Set up maps for feed and fetch targets
  std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
  std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;

  // set_feed_variable
  for (size_t i = 0; i < feed_var_names.size(); ++i) {
    feed_targets[feed_var_names[i]] = &feeds[i];
  }

  // get_fetch_variable
  fetchs.resize(fetch_var_names.size());
  for (size_t i = 0; i < fetch_var_names.size(); ++i) {
    fetch_targets[fetch_var_names[i]] = &fetchs[i];
  }

  // Run the inference program
  executor->Run(*inference_program, scope, feed_targets, fetch_targets);

  // Get outputs
85 86 87 88 89 90 91 92 93 94 95 96 97 98
  for (size_t i = 0; i < fetchs.size(); ++i) {
    auto dims_i = fetchs[i].dims();
    std::cout << "dims_i:";
    for (int j = 0; j < dims_i.size(); ++j) {
      std::cout << " " << dims_i[j];
    }
    std::cout << std::endl;
    std::cout << "result:";
    float* output_ptr = fetchs[i].data<float>();
    for (int j = 0; j < paddle::framework::product(dims_i); ++j) {
      std::cout << " " << output_ptr[j];
    }
    std::cout << std::endl;
  }
99

100 101 102 103
  delete inference_program;
  delete scope;
  delete executor;

104 105
  return 0;
}