fc_compute_test.cc 3.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/kernels/arm/fc_compute.h"
#include <gtest/gtest.h>
#include <vector>
#include "paddle/fluid/lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

TEST(fc_compute_naive, test) {
  lite::Tensor x, w, b, out, out1;
  const int batch_size = 2;
  x.Resize({batch_size, 3});
  w.Resize({4, 3});
  b.Resize({1, 4});
  out.Resize({batch_size, 4});
  out1.Resize({batch_size, 4});

  auto x_data = x.mutable_data<float>();
  auto w_data = w.mutable_data<float>();
  auto b_data = b.mutable_data<float>();
  auto out_data = out.mutable_data<float>();
  auto out_data1 = out1.mutable_data<float>();

  for (int i = 0; i < product(x.dims()); i++) x_data[i] = i;
  for (int i = 0; i < product(w.dims()); i++) w_data[i] = i;
  for (int i = 0; i < product(b.dims()); i++) b_data[i] = i;

  fc_compute_naive(x_data, 3, batch_size,  //
                   w_data, 3, 4,           //
                   b_data, out_data);
  fc_compute_eigen(x_data, 3, batch_size,  //
                   w_data, 3, 4,           //
                   b_data, out_data1);

  for (int i = 0; i < product(out.dims()); i++) {
    EXPECT_NEAR(out_data[0], out_data1[0], 1e-6);
  }
}

TEST(fc_arm, init) {
  FcCompute fc;
  ASSERT_EQ(fc.precision(), PRECISION(kFloat));
  ASSERT_EQ(fc.target(), TARGET(kARM));
}

TEST(fc_arm, algorithm) {
  using matrix_t = Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic>;
  using matrix_map_t = Eigen::Map<matrix_t>;

  // dim 10, 20
  std::vector<float> input(10 * 20);
  std::vector<float> w(20 * 20);
  std::vector<float> output(10 * 20);

  Eigen::Map<const matrix_t> input_mat(input.data(), 10, 20);
  Eigen::Map<const matrix_t> weight_mat(w.data(), 20, 20);
  matrix_map_t output_mat(output.data(), 10, 20);

  output_mat = weight_mat.transpose() * input_mat;
}

TEST(fc_arm, compute) {
  FcCompute fc;
  operators::FcParam param;

  lite::Tensor x;
  lite::Tensor w;
  lite::Tensor bias;
  lite::Tensor output;

  x.Resize(DDim(std::vector<int64_t>({1, 10, 20})));
  w.Resize(DDim(std::vector<int64_t>({20, 20})));
  bias.Resize(DDim(std::vector<int64_t>({1, 10})));
  output.Resize(DDim(std::vector<int64_t>({10, 20})));

  auto* x_data = x.mutable_data<float>();
  auto* w_data = w.mutable_data<float>();
  auto* bias_data = bias.mutable_data<float>();
  auto* output_data = output.mutable_data<float>();

  for (int i = 0; i < 10 * 20; i++) x_data[i] = i;
  for (int i = 0; i < 20 * 20; i++) w_data[i] = i;
  for (int i = 0; i < 10; i++) bias_data[i] = i;
  for (int i = 0; i < 10 * 20; i++) output_data[i] = 0;

  param.in_num_col_dims = 2;
  param.input = &x;
  param.w = &w;
  param.bias = &bias;
  param.output = &output;
  param.in_mat_dims = x.dims();

  fc.SetParam(param);
  fc.Run();

  LOG(INFO) << "x";
  for (int i = 0; i < 10 * 20; i++) LOG(INFO) << x_data[i];

  LOG(INFO) << "output:";
  for (int i = 0; i < 10 * 20; i++) LOG(INFO) << output.data<float>()[i];
}

TEST(fc, retrive_op) {
  auto fc =
      KernelRegistry::Global().Create<TARGET(kARM), PRECISION(kFloat)>("fc");
  ASSERT_TRUE(fc);
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

USE_LITE_KERNEL(fc, kARM, kFloat, kNCHW, def);