operator.h 18.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
L
luotao1 已提交
19
#include <memory>
Q
Qiao Longfei 已提交
20
#include <string>
D
dzhwinter 已提交
21
#include <tuple>
Q
Qiao Longfei 已提交
22
#include <unordered_map>
L
luotao1 已提交
23
#include <utility>
Q
Qiao Longfei 已提交
24 25
#include <vector>

Y
Yu Yang 已提交
26
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
27 28 29 30 31 32
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
X
polish  
Xin Pan 已提交
33
#include "paddle/fluid/framework/operator_kernel_configs.h"
Y
Yi Wang 已提交
34 35 36 37 38
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
39

Q
Qiao Longfei 已提交
40 41
DECLARE_int32(inner_op_parallelism);

Q
Qiao Longfei 已提交
42 43 44
namespace paddle {
namespace framework {

45
/// If a variable is a empty variable, that name will be used.
46
constexpr char kEmptyVarName[] = "@EMPTY@";
47 48 49

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
50
constexpr char kTempVarName[] = "@TEMP@";
51 52 53 54

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
55
constexpr char kGradVarSuffix[] = "@GRAD";
56

M
minqiyang 已提交
57 58
constexpr size_t kGradVarSuffixSize = 5U;

59
/// Variables with this suffix are supposed to be filled up with zeros.
60
constexpr char kZeroVarSuffix[] = "@ZERO";
61

C
chengduo 已提交
62 63 64
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

L
luotao1 已提交
65 66 67 68 69 70 71 72
/// RuntimeContext is used to relate input/output names of Operator with
/// the corresponding variables in name scope.
/// If an Op has attribute kEnableCacheRuntimeContext, it means that in a same
/// name scope, since the input/output names of this Op do not change in the
/// execution, RuntimeContext could be created only at the first iteration of
/// this Op's execution to save the elapsed time.
constexpr char kEnableCacheRuntimeContext[] = "@ENABLE_CACHE_RUNTIME_CONTEXT@";

L
luotao1 已提交
73 74 75 76 77 78
/// If an Op has attribtue kEnableCacheExpectedKernel, it means that in a same
/// name scope and same place, since the expected kerenl of this Op does not
/// change in the execution, it could be recorded only at the first iteration of
/// this Op's execution to save the elapsed time.
constexpr char kEnableCacheExpectedKernel[] = "@ENABLE_CACHE_EXPECTED_KERNEL@";

L
luotao1 已提交
79 80 81 82 83 84 85 86 87
/// If an Op has this attribute, all its kernels should calculate output
/// variable's shape in the corresponding Compute() function. And
/// OperatorWithKernel::RunImpl() would skip call this Op's InferShape()
/// function in its runtime for speedup.
/// TODO(luotao): Note that this temporal attribute would be deleted after all
/// ops contain it.
constexpr char kAllKernelsMustComputeRuntimeShape[] =
    "@ALL_KERNELS_MUST_COMPUTE_RUNTIME_SHAPE@";

D
dzhwinter 已提交
88
// define some kernel priority
89
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
90 91
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

92
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
93 94 95 96 97
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
98 99
}

M
minqiyang 已提交
100
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
101
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
102 103 104 105 106
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
107 108
}

Q
qiaolongfei 已提交
109
proto::VarType::Type GetDataTypeOfVar(const Variable* var);
C
chengduo 已提交
110 111
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
112

Q
Qiao Longfei 已提交
113
class OperatorBase;
114
class ExecutionContext;
115

X
Xin Pan 已提交
116 117
class RuntimeContext {
 public:
X
Xin Pan 已提交
118 119
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
120

X
Xin Pan 已提交
121 122 123 124
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
125 126 127 128
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
129
/**
X
Xin Pan 已提交
130
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
131 132 133 134 135 136
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
137 138
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
139

Q
Qiao Longfei 已提交
140 141
  virtual ~OperatorBase() {}

142
  /// Executor will call this interface function to Run an op.
143 144
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
145

T
typhoonzero 已提交
146 147 148
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

149 150 151
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
152

153 154
  virtual bool SupportGPU() const { return false; }

155 156
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
157
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
158 159
  template <typename T>
  inline const T& Attr(const std::string& name) const {
M
minqiyang 已提交
160 161
    PADDLE_ENFORCE(attrs_.find(name) != attrs_.end(),
                   "%s should be in AttributeMap", name);
162 163 164
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
165

Y
Yu Yang 已提交
166 167
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
168

S
sneaxiy 已提交
169 170 171 172 173
  const OpInfo& Info() const {
    PADDLE_ENFORCE_NOT_NULL(info_, "OpInfo of %s is not found", type_);
    return *info_;
  }

174
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
175
  //! Get a input with argument's name described in `op_proto`
176
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
177
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
178
  const std::vector<std::string>& Inputs(const std::string& name) const;
179
  //! Get all inputs variable names
Q
qijun 已提交
180 181
  std::vector<std::string> InputVars() const;

182
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
183
  //! Get a output with argument's name described in `op_proto`
184
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
185 186
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
187
  const std::vector<std::string>& Outputs(const std::string& name) const;
188
  //! Get all outputs variable names
Y
Yu Yang 已提交
189
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
190

191
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
B
baojun-nervana 已提交
192
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
193 194
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
195

Q
qiaolongfei 已提交
196
 protected:
Q
Qiao Longfei 已提交
197
  std::string type_;
D
dongzhihong 已提交
198
  // NOTE: in case of OpGrad, inputs_ contains:
199
  // I (Inputs)
D
dongzhihong 已提交
200 201
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
202
  VariableNameMap inputs_;
Y
Yu Yang 已提交
203

D
dongzhihong 已提交
204 205
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
206
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
207
  AttributeMap attrs_;
S
sneaxiy 已提交
208 209 210 211

  // OpInfo
  const OpInfo* info_;

212 213
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
214 215 216 217

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
218 219
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
220 221
};

222 223 224 225 226 227 228 229 230 231 232 233 234
#ifdef PADDLE_WITH_CUDA
using KernelConfig = boost::variant<
    std::shared_ptr<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>,
    std::shared_ptr<AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>,
    std::shared_ptr<AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>>;
#else
using KernelConfig = boost::variant<boost::blank>;
#endif

using OpKernelConfigsMap =
    std::unordered_map<OpKernelType, std::vector<KernelConfig>,
                       OpKernelType::Hash>;

Y
Yan Chunwei 已提交
235 236 237 238 239 240 241 242 243 244 245
class OpDuppy : public OperatorBase {
 public:
  OpDuppy() : OperatorBase("duppy", {}, {}, {}) {}

  void RunImpl(const Scope& scope,
               const platform::Place& place) const override {}
};
OpDuppy op_duppy;
Scope scope_duppy;
RuntimeContext runtime_context_duppy({}, {});

246
class ExecutionContext {
Y
Yan Chunwei 已提交
247
 public:
248
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
249
                   const platform::DeviceContext& device_context,
250 251 252 253 254 255 256
                   const RuntimeContext& ctx,
                   std::vector<KernelConfig>* configs)
      : op_(op),
        scope_(scope),
        device_context_(device_context),
        ctx_(ctx),
        kernel_configs_(configs) {}
257

Y
Yan Chunwei 已提交
258 259 260 261 262 263 264
  ExecutionContext(const platform::DeviceContext& device_context)
      : op_(op_duppy),
        scope_(scope_duppy),
        device_context_(device_context),
        ctx_(runtime_context_duppy),
        kernel_configs_(nullptr) {}

Q
qiaolongfei 已提交
265 266 267 268
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
269
  template <typename T>
Y
Yu Yang 已提交
270 271
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
272 273
  }

274
  bool HasInput(const std::string& name) const;
275

276
  bool HasOutput(const std::string& name) const;
277

Y
Yu Yang 已提交
278
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
279
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
280 281
  }

Y
Yu Yang 已提交
282
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
283
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
284 285
  }

X
Xin Pan 已提交
286
  const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
287

X
Xin Pan 已提交
288
  Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
289

290 291
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
X
Xin Pan 已提交
292 293 294 295
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
G
Gabor Buella 已提交
296
    return {it->second.begin(), it->second.end()};
X
Xin Pan 已提交
297 298 299 300 301 302 303 304 305 306 307
  }

  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
    auto names = op_.Outputs(name);
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

308 309
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
310
    auto* var = InputVar(name);
311
    return var == nullptr ? nullptr : &var->Get<T>();
312 313 314 315
  }

  template <typename T>
  T* Output(const std::string& name) const {
316
    auto var = OutputVar(name);
317
    return var == nullptr ? nullptr : var->GetMutable<T>();
318 319 320 321
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
X
Xin Pan 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> const T* {
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
    return res;
  }

352
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
353

Q
QI JUN 已提交
354 355 356 357 358
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

359
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
360
    return device_context_;
Q
qijun 已提交
361
  }
Q
qijun 已提交
362

Q
QI JUN 已提交
363 364 365 366 367 368 369 370
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
371
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
372 373 374
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
375

D
dzhwinter 已提交
376
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
377 378 379 380
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

X
Xin Pan 已提交
381 382 383 384 385 386 387 388 389 390 391
  template <typename T, typename DevContext>
  Tensor AllocateTmpTensor(const framework::DDim& dim,
                           const DevContext& dev_ctx) const {
    auto tmp_allocation_ptr = platform::DeviceTemporaryAllocator::Instance()
                                  .Get<DevContext>(dev_ctx)
                                  .Allocate(product(dim) * sizeof(T));
    auto& deleter = tmp_allocation_ptr.get_deleter();
    auto* allocation_ptr = tmp_allocation_ptr.release();
    auto shared_allocation = std::shared_ptr<memory::allocation::Allocation>(
        allocation_ptr, deleter);

Z
Zeng Jinle 已提交
392 393 394
    PADDLE_ENFORCE(
        dynamic_cast<platform::TemporaryAllocation*>(allocation_ptr) != nullptr,
        "The AllocationPtr must be TemporaryAllocation.");
395
    PADDLE_ENFORCE_GE(allocation_ptr->size(),
X
Xin Pan 已提交
396 397 398 399 400 401 402 403 404
                      framework::product(dim) * sizeof(T));

    paddle::framework::Tensor temp_tensor(
        framework::ToDataType(std::type_index(typeid(T))));
    temp_tensor.Resize(dim);
    temp_tensor.ResetHolder(std::move(shared_allocation));
    return temp_tensor;
  }

405 406
  template <typename T>
  T& GetKernelConfig(int idx) const {
Q
qingqing01 已提交
407 408 409 410
    PADDLE_ENFORCE(
        kernel_configs_ && kernel_configs_->size() > static_cast<size_t>(idx),
        "%s selected kernel doesn't have kernel config %lu <= %d",
        op_.Type().c_str(), kernel_configs_->size(), idx);
411 412 413
    return *boost::get<std::shared_ptr<T>>(kernel_configs_->at(idx));
  }

414
 private:
415 416
  const OperatorBase& op_;
  const Scope& scope_;
417
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
418
  const RuntimeContext& ctx_;
419
  mutable std::vector<KernelConfig>* kernel_configs_;
Q
Qiao Longfei 已提交
420 421
};

422 423 424 425 426 427 428 429 430 431 432 433 434 435
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
436
class OpKernelBase {
Q
qijun 已提交
437
 public:
Q
qijun 已提交
438
  /**
439
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
440 441
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
442
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
443 444
   */

445
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
446

Y
Yu Yang 已提交
447 448 449 450 451 452 453
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
454 455
};

Y
Yu Yang 已提交
456 457
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
458
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
459
  using OpKernelMap =
Y
yuyang18 已提交
460
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
461

Y
Yu Yang 已提交
462 463
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
464 465
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
466 467 468 469
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
470
  }
Y
Yan Chunwei 已提交
471

472
  bool SupportGPU() const override {
Y
Yu Yang 已提交
473 474 475 476 477
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
478 479
  }

480
  virtual void InferShape(InferShapeContext* ctx) const {
S
sneaxiy 已提交
481
    Info().infer_shape_(ctx);
482
  }
Y
Yu Yang 已提交
483

X
Xin Pan 已提交
484 485
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
486

487
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
X
Xin Pan 已提交
488

X
polish  
Xin Pan 已提交
489 490
  std::vector<KernelConfig>* GetKernelConfig(const OpKernelType& key) const;

X
Xin Pan 已提交
491
 protected:
492 493 494
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
495 496

 private:
497
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
498
  // same.
499
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
500
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
L
luotao1 已提交
501 502
  void RunImpl(const Scope& scope, const platform::Place& place,
               RuntimeContext* runtime_ctx) const;
Y
yuyang18 已提交
503 504 505 506 507 508 509

  /**
   * Transfer data from scope to a transfered scope. If there is no data need to
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
510 511 512 513
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
514 515 516 517

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
518

L
Liu Yiqun 已提交
519 520 521
  void ChooseKernel(const RuntimeContext& ctx, const Scope& scope,
                    const platform::Place& place) const;

522 523
 protected:
  mutable OpKernelConfigsMap kernel_configs_map_;
L
Liu Yiqun 已提交
524 525
  mutable std::unique_ptr<OpKernelType> kernel_type_;
  mutable std::unique_ptr<OpKernelFunc> kernel_func_;
L
luotao1 已提交
526 527
  mutable std::unique_ptr<RuntimeContext> runtime_ctx_;
  mutable const Scope* pre_scope_ = nullptr;
528
  mutable bool need_prepare_data_ = true;
L
luotao1 已提交
529
  mutable bool enable_cache_runtime_context = false;
L
luotao1 已提交
530
  mutable bool enable_cache_expected_kernel = false;
L
luotao1 已提交
531
  mutable bool all_kernels_must_compute_runtime_shape = false;
Q
Qiao Longfei 已提交
532 533
};

Y
Yu Yang 已提交
534 535
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
536 537
}  // namespace framework
}  // namespace paddle