parallel_tuner.py 42.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import time
import math
import copy
import hashlib
import itertools
from collections import defaultdict
import numpy as np
from ..process_mesh import ProcessMesh
from ..completion import Completer
from ..parallelizer_v2 import Parallelizer
from ..dist_context import _node_id
from ..dist_op import DistributedOperator
from ..operators.common import find_compatible_distributed_operator_impls
from .trial import Trial, TrialStatus
from .tunable_space import TunableSpace
from .tunable_variable import Boolean, IntRange
from ..cost import CostEstimator
from .tunable_variable import Boolean, IntRange


class ParallelTuner:

    def __init__(self,
                 dist_context,
                 mode="train",
                 max_trials=25,
                 tuner_id=None,
                 seed=None,
                 logger=None,
                 loop_count=10):
        self._loop_count = loop_count
        self._estimator = None
        self._dist_context = dist_context
        assert self._dist_context._is_initialized
        self._mode = mode
        self._cluster = self._dist_context.cluster
        self._num_machines = self._cluster.get_num_machines()
        self._num_devices_per_machine = self._cluster.get_num_devices_per_machine(
        )
        self._space = TunableSpace()
        self._objective = "time"
        self._direction = "min"
        self._max_trials = max_trials
        self._tuner_id = tuner_id
        self._seed = seed if seed is not None else 9999

        print("seed",
              self._seed,
              "mode",
              self._mode,
              "num_machies",
              self._num_machines,
              "num_devices_per_machine",
              self._num_devices_per_machine,
              flush=True)
        self._seed_state = self._seed
        self._logger = logger
        self._max_collisions = 3
        self._tried_values = set()
        self._num_trials = 0
        self._rng = np.random.default_rng(self._seed)

        # Search the op types in the include_op_types,
        # and will search all op types if it is empty.
        # Exclude the op types in the exclude_op_types
        # from the search list.
        self._exclude_op_types = []
        self._include_op_types = []
        # The final dist ops will be searched after considering
        # the include_op_types and exclude_op_types.
        self._concerned_dist_ops = {}

        self._op_id_to_dist_attr_candidates = defaultdict(list)
        self._cached_dims_mapping_candidates = {}
        self._cached_candidates_info = defaultdict(list)

        self._special_ops = [
            "create_py_reader", "create_double_buffer_reader", "read", "while",
            "read_from_array", "write_to_array"
        ]

        # Each parallel strategy has two elements. The First one is for distributed tensors,
        # the second element is for distributed tensors, the third element is for process meshes.
        self._init_parallel_strategy = [None, None, None]
        self._best_parallel_strategy = [None, None, None]

        self._completer = Completer(self._dist_context)

        self._parallelizer = Parallelizer(self._mode, self._completer,
                                          self._dist_context)

    def _generate_combination(self,
                              elements,
                              target,
                              idx,
                              partial_candidate,
                              candidates,
                              num_candidates=None):
        if target == 0:
            candidates.append(copy.deepcopy(partial_candidate))
            return

        if target < 0 or idx == len(elements) \
            or len(candidates) > num_candidates:
            return

        # Use
        partial_candidate.append(elements[idx])
        self._generate_combination(elements, target - elements[idx], idx,
                                   partial_candidate, candidates,
                                   num_candidates)
        # Not use
        partial_candidate.pop()
        self._generate_combination(elements, target, idx + 1, partial_candidate,
                                   candidates, num_candidates)

    def _permute_combination(self,
                             combination,
                             target,
                             check,
                             partial_candidate,
                             candidates,
                             num_candidates=None,
                             skip_prob=None):
        if num_candidates is not None \
            and len(candidates) == num_candidates:
            return

        if len(partial_candidate) == len(combination):
            candidates.append(partial_candidate)
            return

        for i in range(len(combination)):
            if check[i] == 1:
                continue
            if self._rng.choice([True, False], p=[skip_prob, 1 - skip_prob]):
                continue
            if i > 0 and combination[i] == combination[i - 1] \
                and check[i -1] == 0:
                continue
            check[i] = 1
            self._permute_combination(combination, target, check,
                                      partial_candidate + [combination[i]],
                                      candidates, num_candidates, skip_prob)
            check[i] = 0

    def _partition_number(self, target):
        log2_target = int(math.log2(target))
        elements = [pow(2, i) for i in range(log2_target)]
        if pow(2, log2_target) == target:
            elements.append(target)
        seed_candidates = []
        num_seed_candidates = 1000
        partial_results = []
        self._generate_combination(elements, target, 0, partial_results,
                                   seed_candidates, num_seed_candidates)

        candidates = []
        for seed_candidate in seed_candidates:
            cur_candidates = []
            num_cur_candidates = 16
            seed_candidate.sort()
            check = [0 for i in range(len(seed_candidate))]
            if target <= 8:
                skip_prob = 0.0
            else:
                skip_prob = (len(seed_candidate) / target)
            self._permute_combination(seed_candidate, target, check, [],
                                      cur_candidates, num_cur_candidates,
                                      skip_prob)
            candidates.extend(cur_candidates)
        return candidates

    def _partition_devices(self, num_machines, num_devices_per_machine):
        inter_node_partitions = self._partition_number(num_machines)
        intra_node_partitions = self._partition_number(num_devices_per_machine)
        return inter_node_partitions, intra_node_partitions

    def _generate_process_mesh_list(self, inter_node_partition,
                                    intra_node_partition):
        process_mesh_list = []
        start_row = 0
        start_col = 0
        for m in inter_node_partition:
            start_col = 0
            for n in intra_node_partition:
                process_mesh = []
                for p in range(m):
                    start = (start_row +
                             p) * self._num_devices_per_machine + start_col
                    tmp = []
                    for q in range(n):
                        tmp.append(start + q)
                    process_mesh.append(tmp)
                process_mesh_list.append(copy.deepcopy(process_mesh))
                start_col += n
            start_row += m
        return process_mesh_list

    def _generate_dims_mapping_candidates_helper(self, dims_mapping, dims_list,
                                                 start, visited, candidates):
        if start == len(dims_mapping) or all(visited):
            candidates.append(copy.deepcopy(dims_mapping))
            return

        for idx, dim in enumerate(dims_list):
            if visited[idx] == False:
                dims_mapping[start] = dim
                visited[idx] = True
                self._generate_dims_mapping_candidates_helper(
                    dims_mapping, dims_list, start + 1, visited, candidates)
                visited[idx] = False
        dims_mapping[start] = -1
        self._generate_dims_mapping_candidates_helper(dims_mapping, dims_list,
                                                      start + 1, visited,
                                                      candidates)

    def _generate_dims_mapping_candidates(self, dims_mapping_len,
                                          process_mesh_len):
        assert dims_mapping_len >= 1 and process_mesh_len >= 1
        key = (dims_mapping_len, process_mesh_len)
        if key in self._cached_dims_mapping_candidates:
            return self._cached_dims_mapping_candidates[key]
        candidates = []
        dims_mapping = [-1 for i in range(dims_mapping_len)]
        dims_list = [i for i in range(process_mesh_len)]
        visited = [False for i in range(process_mesh_len)]
        self._generate_dims_mapping_candidates_helper(dims_mapping, dims_list,
                                                      0, visited, candidates)
        self._cached_dims_mapping_candidates[key] = candidates
        return candidates

    def _generate_dist_attr_candidates(self, op_id, dist_op):
        # For now, only allow the process meshes have two dimensions
        process_mesh_len = 2
        serial_op = dist_op.serial_op
        op_dist_attr = dist_op.dist_attr
        if serial_op.type in self._special_ops:
            return [copy.deepcopy(op_dist_attr)]
        key = []
        key.append(serial_op.type)
        for input_name in serial_op.input_names:
            key.append(input_name)
            for input_arg_name in serial_op.input(input_name):
                key.append(
                    len(op_dist_attr.get_input_dims_mapping(input_arg_name)))
        for output_name in serial_op.output_names:
            key.append(output_name)
            for output_arg_name in serial_op.output(output_name):
                key.append(
                    len(op_dist_attr.get_output_dims_mapping(output_arg_name)))
        key = tuple(key)

        if key in self._cached_candidates_info:
            cached_dist_attr_candidates = []
            cached_input_arg_names = self._cached_candidates_info[key][0]
            cached_output_arg_names = self._cached_candidates_info[key][1]
            for cached_dist_attr in self._cached_candidates_info[key][2]:
                new_op_dist_attr = copy.deepcopy(dist_op.dist_attr)
                i = 0
                for input_name in serial_op.input_names:
                    for input_arg_name in serial_op.input(input_name):
                        cached_dims_mapping = cached_dist_attr.get_input_dims_mapping(
                            cached_input_arg_names[i])
                        new_op_dist_attr.set_input_dims_mapping(
                            input_arg_name, cached_dims_mapping)
                        i += 1
                i = 0
                for output_name in serial_op.output_names:
                    for output_arg_name in serial_op.output(output_name):
                        cached_dims_mapping = cached_dist_attr.get_output_dims_mapping(
                            cached_output_arg_names[i])
                        new_op_dist_attr.set_output_dims_mapping(
                            output_arg_name, cached_dims_mapping)
                        i += 1
                cached_dist_attr_candidates.append(new_op_dist_attr)
            return cached_dist_attr_candidates

        # cached_candidates_info = []
        input_arg_names = []
        for input_name in serial_op.input_names:
            for input_arg_name in serial_op.input(input_name):
                input_arg_names.append(input_arg_name)
        self._cached_candidates_info[key].append(input_arg_names)
        # cached_candidates_info.append(input_arg_names)
        output_arg_names = []
        for output_name in serial_op.output_names:
            for output_arg_name in serial_op.output(output_name):
                output_arg_names.append(output_arg_name)
        self._cached_candidates_info[key].append(output_arg_names)
        # cached_candidates_info.append(output_arg_names)

        new_op_dist_attr = copy.deepcopy(dist_op.dist_attr)
        # Find valid dims_mapping candidates for inputs
        input_names = []
        dims_mapping_generated = []
        inputs_dist_attrs = op_dist_attr.inputs_dist_attrs
        for tensor_name, tensor_dist_attr in inputs_dist_attrs.items():
            original_dims_mapping = tensor_dist_attr.dims_mapping
            dims_mapping_len = len(original_dims_mapping)
            input_names.append(tensor_name)
            if dims_mapping_len < 1:
                dims_mapping_generated.append(
                    [copy.deepcopy(original_dims_mapping)])
            else:
                dims_mapping_generated.append(
                    self._generate_dims_mapping_candidates(
                        dims_mapping_len, process_mesh_len))
        input_dims_mapping_candidates = []
        for dims_mapping_list in itertools.product(*dims_mapping_generated):
            dims_mapping_list = list(dims_mapping_list)
            assert len(dims_mapping_list) == len(input_names)
            for i, dims_mapping in enumerate(dims_mapping_list):
                new_op_dist_attr.set_input_dims_mapping(input_names[i],
                                                        dims_mapping)
            new_dist_op = DistributedOperator(dist_op.serial_op,
                                              new_op_dist_attr)
            dist_op_impls = find_compatible_distributed_operator_impls(
                new_dist_op, fwd=True)
            if dist_op_impls is not None:
                input_dims_mapping_candidates.append(dims_mapping_list)

        # Find valid dims_mapping candidates for outputs
        output_names = []
        dims_mapping_generated = []
        outputs_dist_attrs = op_dist_attr.outputs_dist_attrs
        for tensor_name, tensor_dist_attr in outputs_dist_attrs.items():
            original_dims_mapping = tensor_dist_attr.dims_mapping
            dims_mapping_len = len(original_dims_mapping)
            output_names.append(tensor_name)
            if dims_mapping_len < 1:
                dims_mapping_generated.append(
                    [copy.deepcopy(original_dims_mapping)])
            else:
                dims_mapping_generated.append(
                    self._generate_dims_mapping_candidates(
                        dims_mapping_len, process_mesh_len))
        output_dims_mapping_candidates = []
        for dims_mapping_list in itertools.product(*dims_mapping_generated):
            dims_mapping_list = list(dims_mapping_list)
            assert len(dims_mapping_list) == len(output_names)
            for i, dims_mapping in enumerate(dims_mapping_list):
                new_op_dist_attr.set_output_dims_mapping(
                    output_names[i], dims_mapping)
            new_dist_op = DistributedOperator(dist_op.serial_op,
                                              new_op_dist_attr)
            dist_op_impls = find_compatible_distributed_operator_impls(
                new_dist_op, fwd=False)
            if dist_op_impls is not None:
                output_dims_mapping_candidates.append(dims_mapping_list)

        if not input_dims_mapping_candidates and output_dims_mapping_candidates:
            inout_dims_mapping_generated = [[[[-2]]],
                                            output_dims_mapping_candidates]
        elif input_dims_mapping_candidates and not output_dims_mapping_candidates:
            inout_dims_mapping_generated = [
                input_dims_mapping_candidates, [[[-2]]]
            ]
        elif not input_dims_mapping_candidates and not output_dims_mapping_candidates:
            inout_dims_mapping_generated = [[[[-2]]], [[[-2]]]]
        else:
            inout_dims_mapping_generated = [
                input_dims_mapping_candidates, output_dims_mapping_candidates
            ]
        # Find valid dims_mapping generated for both inputs and outputs
        cached_dist_attr_candidates = []
        for inout_dims_mapping_list in itertools.product(
                *inout_dims_mapping_generated):
            assert len(inout_dims_mapping_list) == 2
            if input_dims_mapping_candidates:
                assert len(inout_dims_mapping_list[0]) == len(input_names)
            if output_dims_mapping_candidates:
                assert len(inout_dims_mapping_list[1]) == len(output_names)
            # set the dims_mappings for inputs
            for i, dims_mapping in enumerate(inout_dims_mapping_list[0]):
                if dims_mapping != [-2]:
                    new_op_dist_attr.set_input_dims_mapping(
                        input_names[i], dims_mapping)
            # set the dims_mappings for outputs
            for i, dims_mapping in enumerate(inout_dims_mapping_list[1]):
                if dims_mapping != [-2]:
                    new_op_dist_attr.set_output_dims_mapping(
                        output_names[i], dims_mapping)
            new_dist_op = DistributedOperator(dist_op.serial_op,
                                              new_op_dist_attr)
            dist_op_impls = find_compatible_distributed_operator_impls(
                new_dist_op, partial=False)
            if dist_op_impls is None:
                continue
            for dist_op_impl in dist_op_impls:
                new_op_dist_attr.impl_type = dist_op_impl.type
                new_op_dist_attr.impl_idx = dist_op_impl.idx
                cached_dist_attr_candidates.append(
                    copy.deepcopy(new_op_dist_attr))
        self._cached_candidates_info[key].append(cached_dist_attr_candidates)
        return self._cached_candidates_info[key][2]

    def construct_space(self):
        inter_node_partitions, intra_node_partitions = self._partition_devices(
            self._num_machines, self._num_devices_per_machine)
        self._space.choice("inter_node_partitions",
                           inter_node_partitions,
                           default=inter_node_partitions[0])
        self._space.choice("intra_node_partitions",
                           intra_node_partitions,
                           default=intra_node_partitions[0])

        dist_ops = self._dist_context._dist_ops_for_program
        for op_id, dist_op in dist_ops.items():
            op_type = dist_op.serial_op.type
            if self._include_op_types:
                if op_type in self._include_op_types:
                    self._concerned_dist_ops[op_id] = dist_op
            else:
                self._concerned_dist_ops[op_id] = dist_op

        for op_id, dist_op in self._concerned_dist_ops.items():
            op_type = dist_op.serial_op.type
            if op_type in self._exclude_op_types:
                del self._concerned_dist_ops[op_id]

        print("Number of the concered dist ops",
              len(self._concerned_dist_ops),
              flush=True)
        search_space = 1
        for op_id, dist_op in self._concerned_dist_ops.items():
            op_dist_attr_candidates = self._generate_dist_attr_candidates(
                op_id, dist_op)
            search_space *= len(op_dist_attr_candidates)
            self._space.choice(str(op_id),
                               op_dist_attr_candidates,
                               default=op_dist_attr_candidates[0])

    def _compute_values_hash(self, values):
        keys = sorted(values.keys())
        s = "".join(str(k) + "=" + str(values[k]) for k in keys)
        return hashlib.sha256(s.encode("utf-8")).hexdigest()[:32]

    def _random_values(self):
        space = TunableSpace()
        collisions = 0
        while True:
            for v in self._space.variables.values():
                space._register(v)
                space.values[v.name] = v.random(self._seed_state)
                self._seed_state += 1
            values = space.values
            values_hash = self._compute_values_hash(values)
            if values_hash in self._tried_values:
                collisions += 1
                if collisions > self._max_collisions:
                    return None
                continue
            self._tried_values.add(values_hash)
            break
        return values

    def _populate_space(self):
        values = self._random_values()
        if values is None:
            return {"status": TrialStatus.STOPPED, "values": None}
        return {"status": TrialStatus.RUNNING, "values": values}

    def _create_trial(self):
        trial_id = "{{:0{}d}}".format(len(str(self._max_trials)))
        trial_id = trial_id.format(self._num_trials)

        if self._max_trials and self._num_trials >= self._max_trials:
            status = TrialStatus.STOPPED
            values = None
        else:
            results = self._populate_space()
            status = results["status"]
            values = results["values"]

        space = TunableSpace()
        space.variables = self._space.variables
        space.values = values
        trial = Trial(tunable_space=space, trial_id=trial_id, status=status)
        self._num_trials += 1
        return trial

    def _generate_pipeline_starts(self, process_mesh_list):
        total_ops = len(self._dist_context._dist_ops_for_program)
        total_stages = len(process_mesh_list)
        ops_per_stage = total_ops // total_stages
        if ops_per_stage == 0:
            return None
        # Compute the initial pipeline starts
        pipeline_starts = []
        start = 0
        pipeline_starts.append(0)
        # The pipeline_starts have total_stages+1 items, and
        # at least have 2 items.
        for _ in process_mesh_list:
            start += ops_per_stage
            pipeline_starts.append(start)
        pipeline_starts[-1] = total_ops
        # Adjust the pipeline starts by random selection
        directions = []
        sizes = []
        half_ops_per_stage = ops_per_stage // 2
        if half_ops_per_stage > 0 and total_stages > 1:
            new_pipeline_starts = []
            # Don't change the first start
            new_pipeline_starts.append(0)
            # Consider the starts except the first and the last one
            for _ in pipeline_starts[1:-1]:
                directions.append(Boolean("direction"))
                sizes.append(
                    IntRange("size",
                             start=0,
                             stop=half_ops_per_stage,
                             endpoint=True))
            for i, start in enumerate(pipeline_starts[1:-1]):
                direction = directions[i].random(self._seed)
                size = sizes[i].random(self._seed)
                if direction:
                    # Substract 1 from size to avoid the overlapping of new starts
                    new_start = start - (size - 1)
                else:
                    new_start = start + size
                new_pipeline_starts.append(new_start)
            # Don't change the last start
            new_pipeline_starts.append(pipeline_starts[-1])
            # Validate the new starts
            print("Adjusted pipeline starts",
                  new_pipeline_starts,
                  half_ops_per_stage,
                  pipeline_starts,
                  flush=True)
            for i, new_start in enumerate(new_pipeline_starts[1:]):
                assert new_start > new_pipeline_starts[i]
            return new_pipeline_starts
        else:
            print("Non-adjusted pipeline starts",
                  pipeline_starts,
                  half_ops_per_stage,
                  flush=True)
            return pipeline_starts

    def _apply_pipeline_partition(self, process_mesh_list):
        op_id_to_process_mesh = {}
        total_ops = len(self._dist_context._dist_ops_for_program)
        total_stages = len(process_mesh_list)
        ops_per_stage = total_ops // total_stages
        if ops_per_stage == 0:
            return None
        pipeline_starts = self._generate_pipeline_starts(process_mesh_list)
        start_idx = 1
        sorted_op_ids = sorted(self._dist_context._dist_ops_for_program.keys())
        for idx, op_id in enumerate(sorted_op_ids):
            if idx < pipeline_starts[start_idx]:
                op_id_to_process_mesh[op_id] = process_mesh_list[start_idx - 1]
            else:
                start_idx += 1
                op_id_to_process_mesh[op_id] = process_mesh_list[start_idx - 1]
        return op_id_to_process_mesh

    def _amend_dist_attr(self):
        # 1) Reshape the process mesh of [1, x] to [x] or [x, 1] to [x],
        # and amend the corresponding dims_mapping.
        # 2) Set the dim_mapping to -1 when the shape cannot be divided
        # by the corresponding processes.
        for dist_op in self._dist_context._dist_ops_for_program.values():
            dist_attr = dist_op.dist_attr
            process_mesh = dist_attr.process_mesh
            if process_mesh is None:
                continue
            assert process_mesh.ndim == 2
            dim_of_one = None
            dim_of_other = None
            if process_mesh.topology[0] == 1:
                dim_of_one = 0
                dim_of_other = 1
            elif process_mesh.topology[1] == 1:
                dim_of_one = 1
                dim_of_other = 0

            if dim_of_one is not None:
                dist_attr.process_mesh = ProcessMesh(process_mesh.processes)
                self._dist_context.add_process_mesh(dist_attr.process_mesh)

            for arg_name in dist_attr.inputs_dist_attrs.keys():
                new_dims_mapping = []
                dims_mapping = dist_attr.get_input_dims_mapping(arg_name)
                for dim_mapping in dims_mapping:
                    if dim_mapping == dim_of_one:
                        new_dims_mapping.append(-1)
                    elif dim_mapping == dim_of_other:
                        new_dims_mapping.append(0)
                    else:
                        new_dims_mapping.append(dim_mapping)
                dist_attr.set_input_dims_mapping(arg_name, new_dims_mapping)

                dims_mapping = dist_attr.get_input_dims_mapping(arg_name)
                # dynamic_dims = dist_attr.get_input_dynamic_dims(arg_name)
                process_mesh = dist_attr.process_mesh
                process_shape = process_mesh.topology
                tensor = dist_op.get_serial_input(arg_name)
                if dims_mapping:
                    tensor_shape = tensor.shape
                else:
                    continue
                for i, dim_mapping in enumerate(dims_mapping):
                    # if dim_mapping != -1 \
                    #     and (tensor_shape[i] % process_shape[dim_mapping] != 0 \
                    #     or dynamic_dims[i] == 1):
                    if dim_mapping != -1 \
                        and (tensor_shape[i] % process_shape[dim_mapping] != 0):
                        dims_mapping[i] = -1
                    # it is a fix-bug
                    if dim_mapping != -1 \
                        and process_shape[dim_mapping] == 1:
                        dims_mapping[i] = -1

            for arg_name in dist_attr.outputs_dist_attrs.keys():
                new_dims_mapping = []
                dims_mapping = dist_attr.get_output_dims_mapping(arg_name)
                for dim_mapping in dims_mapping:
                    if dim_mapping == dim_of_one:
                        new_dims_mapping.append(-1)
                    elif dim_mapping == dim_of_other:
                        new_dims_mapping.append(0)
                    else:
                        new_dims_mapping.append(dim_mapping)
                dist_attr.set_output_dims_mapping(arg_name, new_dims_mapping)

                dims_mapping = dist_attr.get_output_dims_mapping(arg_name)
                # dynamic_dims = dist_attr.get_output_dynamic_dims(arg_name)
                process_mesh = dist_attr.process_mesh
                process_shape = process_mesh.topology

                tensor = dist_op.get_serial_output(arg_name)
                if dims_mapping:
                    tensor_shape = tensor.shape
                else:
                    continue
                for i, dim_mapping in enumerate(dims_mapping):
                    if dim_mapping != -1 \
                        and (tensor_shape[i] % process_shape[dim_mapping] != 0):
                        dims_mapping[i] = -1
                    # it is a fix-bug
                    if dim_mapping != -1 \
                        and process_shape[dim_mapping] == 1:
                        dims_mapping[i] = -1
            dist_op_impls = find_compatible_distributed_operator_impls(
                dist_op, partial=False)
            serial_op_type = dist_op.serial_op.type

            if dist_op_impls is not None and (
                    serial_op_type != "fused_softmax_mask_upper_triangle"
                    or self._check_fused_softmax_mask_upper_triangle(dist_op)):
                dist_op.dist_attr.impl_type = dist_op_impls[0].type
                dist_op.dist_attr.impl_idx = dist_op_impls[0].idx
            else:
                # Use the default dist op impl
                for arg_name in dist_attr.inputs_dist_attrs.keys():
                    dims_mapping = dist_attr.get_input_dims_mapping(arg_name)
                    for i, _ in enumerate(dims_mapping):
                        dims_mapping[i] = -1
                for arg_name in dist_attr.outputs_dist_attrs.keys():
                    dims_mapping = dist_attr.get_output_dims_mapping(arg_name)
                    for i, _ in enumerate(dims_mapping):
                        dims_mapping[i] = -1
                dist_op.dist_attr.impl_type = "default"
                dist_op.dist_attr.impl_idx = 0

    def _check_fused_softmax_mask_upper_triangle(self, dist_op):
        """The last_but_one dim shoule be equal to last dim."""
        input_name = dist_op.serial_op.input_arg_names[0]
        input_dims_mapping = dist_op.dist_attr.get_input_dims_mapping(
            input_name)
        topology = dist_op.dist_attr.process_mesh.topology
        input_tensor = dist_op.get_serial_input(input_name)
        last_but_one_dim = input_tensor.shape[-2] // topology[
            input_dims_mapping[-2]] if input_dims_mapping[
                -2] != -1 else input_tensor.shape[-2]
        last_dim = input_tensor.shape[-1] // topology[input_dims_mapping[
            -1]] if input_dims_mapping[-1] != -1 else input_tensor.shape[-1]
        if last_but_one_dim == last_dim:
            return True
        return False

    def _eval_trial(self, trial):
        if self._num_trials == 0:
            num_prev_trials = 0
        else:
            num_prev_trials = self._num_trials - 1

        results = None

        start_time = time.time()

        inter_node_partition = trial.space.values["inter_node_partitions"]
        intra_node_partition = trial.space.values["intra_node_partitions"]
        process_mesh_list = self._generate_process_mesh_list(
            inter_node_partition, intra_node_partition)
        print("\tprocess_mesh list", process_mesh_list, flush=True)
        op_id_to_process_mesh = self._apply_pipeline_partition(
            process_mesh_list)
        if op_id_to_process_mesh is None:
            print("Operators are less than pipeline stages", flush=True)
            return results

        op_id_to_dist_attr = {}
        for name, value in trial.space.values.items():
            if name != "inter_node_partitions" \
                and name !="intra_node_partitions":
                op_id_to_dist_attr[int(name)] = value

        end_time = time.time()
        cur_sample_time = end_time - start_time
        self._sample_time = (num_prev_trials * self._sample_time +
                             cur_sample_time) / self._num_trials
        print("\tsample_time",
              num_prev_trials,
              self._num_trials,
              self._sample_time,
              cur_sample_time,
              flush=True)

        assert len(op_id_to_process_mesh) == len(op_id_to_dist_attr)

        start_time = time.time()
        for op_id, process_mesh in op_id_to_process_mesh.items():
            dist_op = self._dist_context._dist_ops_for_program[op_id]
            dist_op.dist_attr = copy.deepcopy(op_id_to_dist_attr[op_id])
            assert dist_op.dist_attr.impl_type == op_id_to_dist_attr[
                op_id].impl_type
            assert dist_op.dist_attr.impl_idx == op_id_to_dist_attr[
                op_id].impl_idx
            dist_op.dist_attr.process_mesh = process_mesh
        self._amend_dist_attr()

        self._completer._complete_tensor_dist_attr_by_op()

        self._dist_context.block_state.parse_forward_blocks(
            self._dist_context.serial_main_program)

        end_time = time.time()
        cur_complete_time = end_time - start_time
        self._complete_time = (num_prev_trials * self._complete_time +
                               cur_complete_time) / self._num_trials
        print("\tcomplete_time",
              num_prev_trials,
              self._num_trials,
              self._complete_time,
              cur_complete_time,
              flush=True)

        start_time = time.time()
        estimate_time = self._estimate_trial()
        end_time = time.time()
        cur_estimate_time = end_time - start_time
        self._estimate_time = (num_prev_trials * self._estimate_time +
                               cur_estimate_time) / self._num_trials
        print("\testimate_time",
              num_prev_trials,
              self._num_trials,
              self._estimate_time,
              cur_estimate_time,
              estimate_time,
              flush=True)

        results = {"estimate_time": estimate_time}
        return results

    def _update_trail(self, trial, metrics, step=0):
        for metric_name, metric_value in metrics.items():
            trial.recorder.update(metric_name, metric_value, step=step)
        return trial.status

    def _estimate_trial(self):
        assert self._cluster is not None
        if self._mode == "eval":
            self._estimator = CostEstimator(
                self._dist_context.serial_main_program,
                self._cluster,
                loop_count=self._loop_count)
        elif self._mode == "predict":
            self._estimator = CostEstimator(
                self._dist_context.serial_main_program,
                self._cluster,
                loop_count=self._loop_count)
        elif self._mode == "train":
            # get serial main program with backward
            serial_main_program = self._dist_context.serial_main_program
            serial_startup_program = self._dist_context.serial_startup_program
            serial_optimizer = self._dist_context.serial_optimizer

            # Generate backward
            serial_loss = self._dist_context.serial_fetch_vars["loss"][0]
            params_grads = self._parallelizer._generate_backward(
                serial_main_program, serial_startup_program, serial_loss)

            # Generate optimizer
            optimizer_ops = self._parallelizer._generate_optimizer(
                serial_main_program, serial_startup_program, serial_optimizer,
                params_grads)
            self._estimator = CostEstimator(serial_main_program,
                                            self._cluster,
                                            loop_count=self._loop_count)

        max_memory = self._estimator._estimate_max_memory_by_dist_op(
            self._dist_context)
        print("\tmax_memory", "{:,}".format(max_memory), flush=True)
        # The max memory must be less than 80% 32GB (hard code)
        if max_memory > 32 * 0.8 * 1024 * 1024 * 1024:
            return math.inf
        else:
            global_cost = self._estimator.estimate(self._dist_context)
            return global_cost.time

    def _store_init_parallel_strategy(self):
        # If there is no annotation information, use the dp as the initial parallel strategy.
        # TODO: we should need a better way to set up the initial parallel strategy.
        if not self._dist_context.has_annotation \
            or not self._dist_context.process_meshes:
            ranks = self._num_machines * self._num_devices_per_machine
            tensor_node = self._dist_context._serial_ordered_tensor_nodes[0]
            tensor_node_id = _node_id(tensor_node)
            tensor = self._dist_context._dist_tensors_for_graph[
                tensor_node_id].serial_tensor
            tensor_dist_attr = self._dist_context._dist_tensors_for_graph[
                tensor_node_id].dist_attr
            tensor_dist_attr.process_mesh = ProcessMesh(list(range(ranks)))
            self._dist_context._process_meshes.append(
                tensor_dist_attr.process_mesh)
            tensor_dist_attr.dims_mapping = [0] + [
                -1 for _ in range(len(tensor.shape) - 1)
            ]
            tensor_dist_attr.mark_annotated("process_mesh")
            tensor_dist_attr.mark_annotated("dims_mapping")
            print("Use dp as the init parallel strategy!", flush=True)

        # Do the sharding propagation
        self._completer.complete_forward_annotation()
        self._dist_context.block_state.parse_forward_blocks(
            self._dist_context.serial_main_program)

        # Backup the intital parallel strategy
        self._init_parallel_strategy[0] = copy.deepcopy(
            self._dist_context._dist_tensors_for_program)
        self._init_parallel_strategy[1] = copy.deepcopy(
            self._dist_context._dist_ops_for_program)
        self._init_parallel_strategy[2] = copy.deepcopy(
            self._dist_context.process_meshes)

        # Initialize the best parallel strategy to the initial one
        self._best_parallel_strategy[0] = copy.deepcopy(
            self._dist_context._dist_tensors_for_program)
        self._best_parallel_strategy[1] = copy.deepcopy(
            self._dist_context._dist_ops_for_program)
        self._best_parallel_strategy[2] = copy.deepcopy(
            self._dist_context._process_meshes)

    def _store_best_parallel_strategy(self):
        # Swap the best and the current parallel strategy
        tmp = [None, None, None]
        tmp[0] = self._best_parallel_strategy[0]
        tmp[1] = self._best_parallel_strategy[1]
        tmp[2] = self._best_parallel_strategy[2]
        self._best_parallel_strategy[
            0] = self._dist_context._dist_tensors_for_program
        self._best_parallel_strategy[
            1] = self._dist_context._dist_ops_for_program
        self._best_parallel_strategy[2] = self._dist_context._process_meshes
        self._dist_context._dist_tensors_for_program = tmp[0]
        self._dist_context._dist_ops_for_program = tmp[1]
        self._dist_context._process_meshes = tmp[2]

    def tune(self):
        global_start_time = time.time()
        self._dist_context._backup(serial=True, dist=True)
        # This store statement must follow the above backup statement
        self._store_init_parallel_strategy()
        init_time = self._estimate_trial()  # estimate_trial when init
        # print_program_with_dist_attr(self._dist_context.serial_main_program, self._dist_context)
        # We have to restore the distributed context, because the estimation of one trail need to
        # generate the backward and update parts. Since we will do the tuning process,
        # here we only need to reset all distributed information to the default one.
        self._dist_context._restore(serial=True,
                                    serial_mode="to_backup",
                                    dist=True,
                                    dist_mode="to_default")

        best_time = init_time
        start_time = time.time()
        self.construct_space()
        end_time = time.time()
        print("construct_space time",
              self._num_trials,
              end_time - start_time,
              flush=True)
        create_trial_time = 0.0
        eval_trial_time = 0.0
        self._sample_time = 0.0
        self._complete_time = 0.0
        self._estimate_time = 0.0
        while True:
            start_time = time.time()
            trial = self._create_trial()
            if self._num_trials == 0:
                num_prev_trials = 0
            else:
                num_prev_trials = self._num_trials - 1
            end_time = time.time()
            cur_create_trial_time = end_time - start_time
            create_trial_time = (num_prev_trials * create_trial_time +
                                 cur_create_trial_time) / self._num_trials
            print("create_trial time",
                  num_prev_trials,
                  self._num_trials,
                  create_trial_time,
                  cur_create_trial_time,
                  flush=True)
            if trial.status == TrialStatus.STOPPED:
                break
            # We need to backup the distributed context, because the evaluation of one trail will
            # generate the backward and update parts which may change the context.
            # However, the distributed information of the context aren't backup since a new one is used.
            self._dist_context._backup(serial=True, dist=False)

            start_time = time.time()
            results = self._eval_trial(trial)
            end_time = time.time()
            cur_eval_trial_time = end_time - start_time
            eval_trial_time = (num_prev_trials * eval_trial_time +
                               cur_eval_trial_time) / self._num_trials
            print("eval_trial time",
                  num_prev_trials,
                  self._num_trials,
                  eval_trial_time,
                  cur_eval_trial_time,
                  "\n",
                  flush=True)

            cur_time = results["estimate_time"]
            if cur_time < best_time:
                self._update_trail(trial, results)
                self._store_best_parallel_strategy()
                best_time = cur_time
            # We need to restore the distributed context and reset the distributed information to the default.
            self._dist_context._restore(serial=True,
                                        serial_mode="to_backup",
                                        dist=True,
                                        dist_mode="to_default")
        # Select the best parallel strategy
        self._dist_context._dist_tensors_for_program = self._best_parallel_strategy[
            0]
        self._dist_context._dist_ops_for_program = self._best_parallel_strategy[
            1]
        self._dist_context._process_meshes = self._best_parallel_strategy[2]