reshape_kernel.cc 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/phi/backends/onednn/onednn_reuse.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

static DDim ValidateShape(const std::vector<int64_t>& shape,
                          const DDim& in_dims) {
  const int64_t in_size = product(in_dims);
  auto in_dims_vec = vectorize(in_dims);
  bool all_positive = std::all_of(in_dims_vec.cbegin(),
                                  in_dims_vec.cend(),
                                  [](int64_t i) { return i > 0; });
  // only one dimension can be set to -1, whose size will be automatically
  // infered
  const int64_t unk_dim_val = -1;
  const int64_t copy_dim_val = 0;

  std::vector<int64_t> output_shape(shape.size(), 0);
  int64_t capacity = 1;
  int unk_dim_idx = -1;
  for (size_t i = 0; i < shape.size(); ++i) {
    if (shape[i] == unk_dim_val) {
      PADDLE_ENFORCE_EQ(
          unk_dim_idx,
          -1,
          errors::InvalidArgument(
              "Only one dimension value of 'shape' in ReshapeOp can "
              "be -1. But received shape = [%s], shape[%d] is also -1.",
              make_ddim(shape),
              i));
      unk_dim_idx = i;
    } else if (shape[i] == copy_dim_val) {
      PADDLE_ENFORCE_LT(
          static_cast<int>(i),
          in_dims.size(),
          errors::InvalidArgument(
              "The index of 0 in `shape` must be less than "
              "the input tensor X's dimensions. "
              "But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
              "X's dimensions = %d.",
              make_ddim(shape),
              i,
              in_dims,
              in_dims.size()));
    } else {
      PADDLE_ENFORCE_GT(
          shape[i],
          0,
          errors::InvalidArgument(
              "Each dimension value of 'shape' in ReshapeOp must not "
              "be negative except one unknown dimension. "
              "But received  shape = [%s], shape[%d] = %d.",
              make_ddim(shape),
              i,
              shape[i]));
    }

    capacity *= (shape[i] ? shape[i] : in_dims[i]);
    output_shape[i] = (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
  }

  if (unk_dim_idx != -1) {
    if (all_positive) {
      // in_size < 0 and is un-determinate in compile time, skip the check,
      // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
      // capacity = -24, in_size = -8, output_shape[0] = 0
      // the following check will fail.
      output_shape[unk_dim_idx] = -in_size / capacity;
      PADDLE_ENFORCE_EQ(
          output_shape[unk_dim_idx] * capacity,
          -in_size,
          errors::InvalidArgument(
              "The 'shape' attribute in ReshapeOp is invalid. "
              "The input tensor X'size must be divisible by known "
              "capacity of 'shape'. "
              "But received X's shape = [%s], X's size = %d, "
              "'shape' is [%s], known capacity of 'shape' is %d.",
              in_dims,
              in_size,
              make_ddim(shape),
              capacity));
    } else {
      output_shape[unk_dim_idx] = -1;
    }
  } else {
    if (all_positive) {
      PADDLE_ENFORCE_EQ(
          capacity,
          in_size,
          errors::InvalidArgument(
              "The 'shape' in ReshapeOp is invalid. "
              "The input tensor X'size must be equal to the capacity of "
              "'shape'. "
              "But received X's shape = [%s], X's size = %d, 'shape' is "
              "[%s], the capacity of 'shape' is %d.",
              in_dims,
              in_size,
              make_ddim(shape),
              capacity));
    }
  }
  return make_ddim(output_shape);
}

template <typename T, typename Context>
void ExecuteReshape(const Context& dev_ctx,
                    const DenseTensor& x,
                    const IntArray& shape,
                    const DDim& x_dims,
                    DenseTensor* out) {
  auto out_dims = ValidateShape(shape.GetData(), x_dims);
  auto x_vec_dims = vectorize(x_dims);

  funcs::ReorderOneDNNHandler reorder_handler(
      x_vec_dims,
      x.dtype(),
      funcs::ToOneDNNDataType(x.dtype()),
      dev_ctx.GetEngine());

  auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
      x.mem_desc(), funcs::to_void_cast(x.data<T>()));
  out->Resize(x_dims);  // to match x numel, format is changed later
  // reorder is done into a plain tag to allow usage with blocked formats
  auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
      out, funcs::GetPlainOneDNNFormat(x_dims.size()), dev_ctx.GetPlace());
  auto reorder_p = reorder_handler.AcquireReorder(reorder_dst_memory_p,
                                                  reorder_src_memory_p);

  auto& astream = OneDNNContext::tls().get_stream();
  reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);

  astream.wait();

  out->Resize(out_dims);
  out->set_mem_desc(
      reorder_dst_memory_p->get_desc().reshape(vectorize(out_dims)));
}

template <typename T, typename Context>
151 152 153 154
void ReshapeInferKernel(const Context& dev_ctx,
                        const DenseTensor& x,
                        const IntArray& shape,
                        DenseTensor* out) {
155 156 157 158 159
  auto x_dims = x.dims();
  ExecuteReshape<T, Context>(dev_ctx, x, shape, x_dims, out);
}

template <typename T, typename Context>
160 161 162 163 164
void ReshapeKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const IntArray& shape,
                   DenseTensor* out,
                   DenseTensor* xshape) {
165 166 167 168 169 170
  auto x_dims = slice_ddim(xshape->dims(), 1, xshape->dims().size());
  ExecuteReshape<T, Context>(dev_ctx, x, shape, x_dims, out);
}

}  // namespace phi

171
PD_REGISTER_KERNEL(reshape_infer,
172 173
                   OneDNN,
                   ONEDNN,
174
                   phi::ReshapeInferKernel,
175 176
                   float,
                   phi::dtype::bfloat16) {}
177 178 179

PD_REGISTER_KERNEL(
    reshape, OneDNN, ONEDNN, phi::ReshapeKernel, float, phi::dtype::bfloat16) {}