conv_kernel.cu 25.6 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/phi/kernels/conv_kernel.h"

H
hong 已提交
17
#include "paddle/phi/backends/gpu/gpu_context.h"
18
#include "paddle/phi/core/dense_tensor.h"
H
hong 已提交
19 20 21
#include "paddle/phi/core/kernel_registry.h"

#ifdef PADDLE_WITH_HIP
22
#include "paddle/phi/kernels/gpudnn/conv_miopen_helper.h"
H
hong 已提交
23
#else
24
#include "paddle/phi/kernels/gpudnn/conv_cudnn_v7.h"
H
hong 已提交
25 26 27 28
#endif

#include "paddle/fluid/platform/cudnn_workspace_helper.h"
#include "paddle/fluid/platform/profiler.h"
29 30
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/float16.h"
H
hong 已提交
31 32
#include "paddle/phi/kernels/cpu/conv_util.h"
#include "paddle/phi/kernels/funcs/batch_norm_utils.h"
33
#include "paddle/phi/kernels/funcs/padding.h"
H
hong 已提交
34 35
#include "paddle/phi/kernels/impl/conv_cudnn_impl.h"

36 37 38 39 40 41 42 43
#ifdef PADDLE_WITH_CUDNN_FRONTEND
// clang-format off
#include "paddle/phi/backends/dynload/cudnn_frontend.h"
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/gpudnn/conv_cudnn_frontend.h"
// clang-format on
#endif

H
hong 已提交
44 45
namespace phi {

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
template <typename T, typename Context>
void ConvCudnnKernelImplV7(const DenseTensor* transformed_input,
                           const DenseTensor* transformed_filter_channel,
                           const Context& ctx,
                           const std::vector<int>& strides,
                           const std::vector<int>& padding_common,
                           const std::vector<int>& dilations,
                           paddle::platform::DataLayout compute_format,
                           paddle::platform::DataLayout layout,
                           bool exhaustive_search,
                           bool deterministic,
                           int groups,
                           DenseTensor* transformed_output) {
  const T* input_data = transformed_input->data<T>();
  const T* filter_data = transformed_filter_channel->data<T>();
  T* output_data = transformed_output->data<T>();

  auto handle = ctx.cudnn_handle();
  auto workspace_handle = ctx.cudnn_workspace_handle();

  auto layout_format = paddle::platform::GetCudnnTensorFormat(layout);
  auto dtype = paddle::platform::CudnnDataType<T>::type;

  // ------------------- cudnn descriptors ---------------------
  ConvArgs args{handle,
                transformed_input,
                transformed_filter_channel,
                transformed_output,
                strides,
                padding_common,
                dilations,
                dtype,
                groups,
                compute_format};

#ifdef PADDLE_WITH_HIP
  // MIOPEN need to set groups in cdesc in miopen_desc.h
  args.cdesc.set(dtype,
                 padding_common,
                 strides,
                 dilations,
                 paddle::platform::AllowTF32Cudnn(),
                 groups);
#else
  args.cdesc.set(dtype,
                 padding_common,
                 strides,
                 dilations,
                 paddle::platform::AllowTF32Cudnn());
#endif

#if defined(PADDLE_WITH_CUDA) && CUDNN_VERSION_MIN(7, 0, 1)
  // cudnn 7 can support groups, no need to do it manually
  // FIXME(typhoonzero): find a better way to disable groups
  // rather than setting it to 1.
  PADDLE_ENFORCE_GPU_SUCCESS(
      paddle::platform::dynload::cudnnSetConvolutionGroupCount(
          args.cdesc.desc(), groups));
  groups = 1;
#endif
#ifdef PADDLE_WITH_HIP
  // MIOPEN do not set groups in wdesc after set groups in cdesc
  groups = 1;
#endif
  args.idesc.set(*transformed_input, layout_format);
  args.wdesc.set(*transformed_filter_channel, layout_format, groups);
  args.odesc.set(*transformed_output, layout_format);
  int i_n, i_c, i_d, i_h, i_w;
  int o_n, o_c, o_d, o_h, o_w;

  if (compute_format == paddle::platform::DataLayout::kNHWC) {
    GetNCDHW(transformed_input->dims(),
             paddle::platform::DataLayout::kNHWC,
             &i_n,
             &i_c,
             &i_d,
             &i_h,
             &i_w);
    GetNCDHW(transformed_output->dims(),
             paddle::platform::DataLayout::kNHWC,
             &o_n,
             &o_c,
             &o_d,
             &o_h,
             &o_w);
  } else {
    GetNCDHW(transformed_input->dims(),
             paddle::platform::DataLayout::kNCHW,
             &i_n,
             &i_c,
             &i_d,
             &i_h,
             &i_w);
    GetNCDHW(transformed_output->dims(),
             paddle::platform::DataLayout::kNCHW,
             &o_n,
             &o_c,
             &o_d,
             &o_h,
             &o_w);
  }

  int group_offset_in = i_c / groups * i_h * i_w * i_d;
  int group_offset_out = o_c / groups * o_h * o_w * o_d;
  int group_offset_filter = transformed_filter_channel->numel() / groups;
  // ------------------- cudnn conv workspace ---------------------
  size_t workspace_size = 0;  // final workspace to allocate.
// ------------------- cudnn conv algorithm ---------------------
#ifdef PADDLE_WITH_HIP
  SearchResult<miopenConvFwdAlgorithm_t> fwd_result;
  using search = SearchAlgorithm<miopenConvFwdAlgorithm_t>;
  workspace_size = search::GetWorkspaceSize(args);
  fwd_result.algo = search::Find<T>(
      args, exhaustive_search, deterministic, workspace_size, ctx);
#else
  SearchResult<cudnnConvolutionFwdAlgo_t> fwd_result;
  using search = SearchAlgorithm<ConvKind::kForward>;
  fwd_result = search::Find<T>(ctx, args, exhaustive_search, deterministic);
  workspace_size = fwd_result.workspace_size;
#endif

#if defined(PADDLE_WITH_CUDA) && CUDNN_VERSION_MIN(7, 0, 1)
  // when groups > 1, SearchAlgorithm find algo is CUDNN_CONVOLUTION_\
    // FWD_ALGO_WINOGRAD_NONFUSED, but this kind of algorithm is unstable
  // in forward computation, so change the algorithm to CUDNN_CONVOLUTION_\
    // FWD_ALGO_IMPLICIT_GEMM manually.
  if (groups > 1) {
    fwd_result.algo = static_cast<cudnnConvolutionFwdAlgo_t>(0);
  }
#endif

  // ------------------- cudnn conv forward ---------------------
  ScalingParamType<T> alpha = 1.0f;
  ScalingParamType<T> beta = 0.0f;

  // NOTE(zhiqiu): inplace addto is not supportted in double grad yet.
  // ScalingParamType<T> beta = ctx.Attr<bool>("use_addto") ? 1.0f : 0.0f;
  // VLOG(4) << "Conv: use_addto = " << ctx.Attr<bool>("use_addto");

#ifdef PADDLE_WITH_HIP
  workspace_handle.RunFunc(
      [&](void* workspace_ptr) {
        PADDLE_ENFORCE_GPU_SUCCESS(
            paddle::platform::dynload::miopenConvolutionForward(
                handle,
                &alpha,
                args.idesc.desc(),
                input_data,
                args.wdesc.desc(),
                filter_data,
                args.cdesc.desc(),
                fwd_result.algo,
                &beta,
                args.odesc.desc(),
                output_data,
                workspace_ptr,
                workspace_size));
      },
      workspace_size);
#else
  ConvRunner<T, ConvKind::kForward>::Apply(ctx,
                                           args,
                                           fwd_result,
                                           input_data,
                                           filter_data,
                                           output_data,
                                           groups,
                                           group_offset_in,
                                           group_offset_filter,
                                           group_offset_out,
                                           workspace_size,
                                           &workspace_handle,
                                           false);
#endif
}

#ifdef PADDLE_WITH_CUDNN_FRONTEND
template <typename T, typename Context>
void ConvCudnnKernelImplV8(const DenseTensor* input_tensor,
                           const DenseTensor* filter_channel_tensor,
                           const Context& ctx,
                           const std::vector<int>& strides,
                           const std::vector<int>& padding_common,
                           const std::vector<int>& dilations,
                           paddle::platform::DataLayout layout,
                           bool exhaustive_search,
                           bool deterministic,
                           int groups,
                           DenseTensor* output_tensor) {
  auto& plan_cache = phi::autotune::AutoTuneCache::Instance().GetConvV8(
      phi::autotune::AlgorithmType::kConvForwardV8);

  PADDLE_ENFORCE_EQ(
      groups,
      1,
      paddle::platform::errors::Unimplemented(
          "Group concolution using CUDNNv8 API unsupported for now"));

  T* input_data = const_cast<T*>(input_tensor->data<T>());
  T* filter_data = const_cast<T*>(filter_channel_tensor->data<T>());
  T* output_data = output_tensor->data<T>();
  cudnnHandle_t handle = const_cast<cudnnHandle_t>(ctx.cudnn_handle());
  auto workspace_handle = ctx.cudnn_workspace_handle();

  auto layout_format = paddle::platform::GetCudnnTensorFormat(layout);
  auto dtype = paddle::platform::CudnnDataType<T>::type;

  float alpha = 1.0f;
  float beta = 0.0f;

  using helper = CudnnFrontendConvHelper;
  auto op_graph = helper::BuildConvOperationGraph<
      CUDNN_BACKEND_OPERATION_CONVOLUTION_FORWARD_DESCRIPTOR>(
      input_tensor,
      output_tensor,
      filter_channel_tensor,
      layout_format,
      strides,
      padding_common,
      dilations,
      dtype,
      handle,
      alpha,
      beta);

  if (plan_cache.FindPlan(op_graph)) {
    auto engine_config = plan_cache.GetConfig(op_graph, handle);
    auto cached_plan = cudnn_frontend::ExecutionPlanBuilder()
                           .setHandle(handle)
                           .setEngineConfig(engine_config, op_graph.getTag())
                           .build();
    auto workspace_size = cached_plan.getWorkspaceSize();
    VLOG(4) << "Cached execution plan found." << cached_plan.getTag()
            << "; Require workspace: " << workspace_size;
    workspace_handle.RunFunc(
        [&](void* workspace_ptr) {
          void* data_ptrs[] = {input_data, output_data, filter_data};
          int64_t uids[] = {'x', 'y', 'w'};
          auto variant_pack = cudnn_frontend::VariantPackBuilder()
                                  .setWorkspacePointer(workspace_ptr)
                                  .setDataPointers(3, data_ptrs)
                                  .setUids(3, uids)
                                  .build();
          PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cudnnBackendExecute(
              handle, cached_plan.get_raw_desc(), variant_pack.get_raw_desc()));
        },
        workspace_size);
    return;
  }

  auto plans = helper::FindExecutionPlans(&op_graph,
                                          exhaustive_search,
                                          deterministic,
                                          input_data,
                                          output_data,
                                          filter_data,
                                          handle,
                                          &workspace_handle);

  for (auto& plan : plans) {
    try {
      int64_t workspace_size = plan.getWorkspaceSize();
      workspace_handle.RunFunc(
          [&](void* workspace_ptr) {
            void* data_ptrs[] = {input_data, output_data, filter_data};
            int64_t uids[] = {'x', 'y', 'w'};
            auto variant_pack = cudnn_frontend::VariantPackBuilder()
                                    .setWorkspacePointer(workspace_ptr)
                                    .setDataPointers(3, data_ptrs)
                                    .setUids(3, uids)
                                    .build();
            PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cudnnBackendExecute(
                handle, plan.get_raw_desc(), variant_pack.get_raw_desc()));
          },
          workspace_size);
      if (!exhaustive_search || plan_cache.IsStable(op_graph, plan.getTag())) {
        plan_cache.InsertPlan(op_graph, plan);
      }
      return;
    } catch (cudnn_frontend::cudnnException& e) {
      VLOG(4) << "Plan " << plan.describe()
              << "failed to execute. Trying next plan.";
    } catch (phi::enforce::EnforceNotMet& e) {
      VLOG(4) << "Plan " << plan.describe()
              << "failed to execute. Trying next plan.";
    }
  }
  PADDLE_THROW(
      phi::errors::InvalidArgument("[CUDNN Frontend API] No valid plan could "
                                   "be found to execute conv."));
}
#endif

H
hong 已提交
339 340 341 342 343 344 345 346
template <typename T, typename Context>
void ConvCudnnKernel(const Context& ctx,
                     const DenseTensor& input,
                     const DenseTensor& filter,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings_t,
                     const std::string& padding_algorithm,
                     const std::vector<int>& dilations_t,
347
                     int groups,
H
hong 已提交
348 349
                     const std::string& data_format,
                     DenseTensor* output) {
H
hong 已提交
350
  ctx.template Alloc<T>(output);
H
hong 已提交
351 352 353
  std::vector<int> paddings = paddings_t;
  std::vector<int> dilations = dilations_t;

354 355 356 357 358 359 360 361 362
  bool has_exhaustive_search = ctx.HasDnnAttr("exhaustive_search");
  VLOG(4) << "GPUContext contains `exhaustive_search`: "
          << has_exhaustive_search;
  bool exhaustive_search_attr =
      has_exhaustive_search
          ? PADDLE_GET_CONST(bool, ctx.GetDnnAttr("exhaustive_search"))
          : false;
  bool exhaustive_search =
      FLAGS_cudnn_exhaustive_search || exhaustive_search_attr;
H
hong 已提交
363
  bool deterministic = FLAGS_cudnn_deterministic;
364
  PADDLE_ENFORCE_EQ(exhaustive_search && deterministic,
H
hong 已提交
365 366 367 368 369 370 371 372 373 374 375 376
                    false,
                    phi::errors::InvalidArgument(
                        "Cann't set exhaustive_search True and "
                        "FLAGS_cudnn_deterministic True at same time."));

  const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");
  auto dtype = paddle::platform::CudnnDataType<T>::type;

#ifdef PADDLE_WITH_HIP
  // HIP MIOPEN ONLY SUPPORT NCHW format
  auto compute_format = paddle::platform::DataLayout::kNCHW;
#else
377
#if CUDNN_VERSION_MIN(8, 1, 0)
H
hong 已提交
378
  // Tensor Core introduced from Volta GPUs supports more faster conv op
379 380 381 382 383 384 385
  // with FP16 or BF16 in NHWC data format.
  const bool compute_in_nhwc =
      (dtype == CUDNN_DATA_HALF || dtype == CUDNN_DATA_BFLOAT16) &&
      IsVoltaOrLater(ctx);
#else
  // Tensor Core introduced from Volta GPUs supports more faster conv op
  // with FP16 in NHWC data format. (BF16 require cudnn >= 8.1.0)
H
hong 已提交
386
  const bool compute_in_nhwc = dtype == CUDNN_DATA_HALF && IsVoltaOrLater(ctx);
387
#endif
H
hong 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
  // We will only do data format conversion from NHWC to NCHW.
  // cudnn will convert NCHW to NHWC automatically on Tensor Core.
  auto compute_format = compute_in_nhwc && channel_last
                            ? paddle::platform::DataLayout::kNHWC
                            : paddle::platform::DataLayout::kNCHW;
#endif
  VLOG(3) << "Compute ConvOp with cuDNN:"
          << " data_format=" << data_format << " compute_format="
          << (compute_format == paddle::platform::DataLayout::kNHWC ? "NHWC"
                                                                    : "NCHW");

  // ------------ transformed tensor -----------
  DenseTensor transformed_input_channel(input.type());
  DenseTensor transformed_output(output->type());
  DenseTensor transformed_filter_channel(filter.type());
403

H
hong 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
  if (channel_last && compute_format == paddle::platform::DataLayout::kNCHW) {
    VLOG(3) << "Transform input tensor from NHWC to NCHW.";
    ResizeToChannelFirst<Context, T>(ctx, &input, &transformed_input_channel);
    TransToChannelFirst<Context, T>(ctx, &input, &transformed_input_channel);

    ResizeToChannelFirst<Context, T>(ctx, output, &transformed_output);

  } else {
    transformed_input_channel.ShareDataWith(input);
    transformed_output.ShareDataWith(*output);
  }
  if (compute_format == paddle::platform::DataLayout::kNHWC) {
    VLOG(3) << "Transform filter tensor from NCHW to NHWC.";
    ResizeToChannelLast<Context, T>(ctx, &filter, &transformed_filter_channel);
    TransToChannelLast<Context, T>(ctx, &filter, &transformed_filter_channel);
  } else {
    transformed_filter_channel.ShareDataWith(filter);
  }

  // update padding and dilation
  auto in_dims = transformed_input_channel.dims();
  auto filter_dims = transformed_filter_channel.dims();
  DDim in_data_dims;
  DDim filter_data_dims;

  if (compute_format == paddle::platform::DataLayout::kNCHW) {
    in_data_dims = slice_ddim(in_dims, 2, in_dims.size());
    filter_data_dims = slice_ddim(filter_dims, 2, filter_dims.size());
  } else {
    in_data_dims = slice_ddim(in_dims, 1, in_dims.size() - 1);
    filter_data_dims = slice_ddim(filter_dims, 1, filter_dims.size() - 1);
  }

  std::vector<int> ksize = vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(
      &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);

  int data_dim = strides.size();  // 2d or 3d
  bool is_sys_pad = funcs::IsSymmetricPadding(paddings, data_dim);

  DenseTensor transformed_input;
  std::vector<int> padding_common(data_dim, 0);
  if (!is_sys_pad) {
    std::vector<int> padding_diff(data_dim);
    std::vector<int> new_input_shape_vec(data_dim + 2);
    new_input_shape_vec[0] = transformed_input_channel.dims()[0];

    if (compute_format == paddle::platform::DataLayout::kNCHW) {
      new_input_shape_vec[1] = transformed_input_channel.dims()[1];
    } else {
      new_input_shape_vec[data_dim + 1] =
          transformed_input_channel.dims()[data_dim + 1];
    }

    std::vector<int> input_pad(transformed_input_channel.dims().size() * 2, 0);
    for (size_t i = 0; i < data_dim; ++i) {
      padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
      padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
      if (compute_format == paddle::platform::DataLayout::kNCHW) {
        new_input_shape_vec[i + 2] =
            transformed_input_channel.dims()[i + 2] + padding_diff[i];
      } else {
        new_input_shape_vec[i + 1] =
            transformed_input_channel.dims()[i + 1] + padding_diff[i];
      }
      if (compute_format == paddle::platform::DataLayout::kNCHW) {
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      } else {
        input_pad[2 * i + 2] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 2 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
    }
    DDim new_input_shape(make_ddim(new_input_shape_vec));
    transformed_input.Resize(new_input_shape);
H
hong 已提交
479
    ctx.template Alloc<T>(&transformed_input);
H
hong 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525

    const int rank = transformed_input_channel.dims().size();
    T pad_value(0.0);
    switch (rank) {
      case 4: {
        funcs::PadFunction<Context, T, 4>(ctx,
                                          input_pad,
                                          transformed_input_channel,
                                          pad_value,
                                          &transformed_input);
      } break;
      case 5: {
        funcs::PadFunction<Context, T, 5>(ctx,
                                          input_pad,
                                          transformed_input_channel,
                                          pad_value,
                                          &transformed_input);
      } break;
      default:
        PADDLE_THROW(phi::errors::InvalidArgument(
            "ConvOp only support tensors with 4 or 5 dimensions."));
    }

  } else {
    transformed_input.ShareDataWith(transformed_input_channel);
    if (paddings.size() == data_dim) {
      for (size_t i = 0; i < data_dim; ++i) {
        padding_common[i] = paddings[i];
      }
    } else {
      for (size_t i = 0; i < data_dim; ++i) {
        padding_common[i] = paddings[2 * i];
      }
    }
  }

  paddle::platform::DataLayout layout =
      compute_format == paddle::platform::DataLayout::kNHWC
          ? paddle::platform::DataLayout::kNHWC
          : paddle::platform::DataLayout::kNCHW;
  if (transformed_input.dims().size() == 5) {
    layout = compute_format == paddle::platform::DataLayout::kNHWC
                 ? paddle::platform::DataLayout::kNDHWC
                 : paddle::platform::DataLayout::kNCDHW;
  }

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
#ifdef PADDLE_WITH_CUDNN_FRONTEND
  if (dynload::IsCudnnFrontendEnabled() && (groups == 1))
    ConvCudnnKernelImplV8<T>(&transformed_input,
                             &transformed_filter_channel,
                             ctx,
                             strides,
                             padding_common,
                             dilations,
                             layout,
                             exhaustive_search,
                             deterministic,
                             groups,
                             &transformed_output);
  else
    ConvCudnnKernelImplV7<T>(&transformed_input,
                             &transformed_filter_channel,
                             ctx,
                             strides,
                             padding_common,
                             dilations,
                             compute_format,
                             layout,
                             exhaustive_search,
                             deterministic,
                             groups,
                             &transformed_output);
H
hong 已提交
552
#else
553 554 555 556 557 558 559 560 561 562 563 564
  ConvCudnnKernelImplV7<T>(&transformed_input,
                           &transformed_filter_channel,
                           ctx,
                           strides,
                           padding_common,
                           dilations,
                           compute_format,
                           layout,
                           exhaustive_search,
                           deterministic,
                           groups,
                           &transformed_output);
H
hong 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
#endif

  if (channel_last && compute_format == paddle::platform::DataLayout::kNCHW) {
    TransToChannelLast<Context, T>(ctx, &transformed_output, output);
  }
}

template <typename T, typename Context>
void Conv3DCudnnKernel(const Context& dev_ctx,
                       const DenseTensor& input,
                       const DenseTensor& filter,
                       const std::vector<int>& strides,
                       const std::vector<int>& paddings,
                       const std::string& padding_algorithm,
                       int groups,
                       const std::vector<int>& dilations,
                       const std::string& data_format,
                       DenseTensor* out) {
  ConvCudnnKernel<T>(dev_ctx,
                     input,
                     filter,
                     strides,
                     paddings,
                     padding_algorithm,
                     dilations,
590
                     groups,
H
hong 已提交
591 592 593 594
                     data_format,
                     out);
}

H
hong 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
template <typename T, typename Context>
void DepthwiseConvCudnnKernel(const Context& dev_ctx,
                              const DenseTensor& input,
                              const DenseTensor& filter,
                              const std::vector<int>& strides,
                              const std::vector<int>& paddings,
                              const std::string& padding_algorithm,
                              int groups,
                              const std::vector<int>& dilations,
                              const std::string& data_format,
                              DenseTensor* out) {
  ConvCudnnKernel<T>(dev_ctx,
                     input,
                     filter,
                     strides,
                     paddings,
                     padding_algorithm,
                     dilations,
613
                     groups,
H
hong 已提交
614 615 616 617
                     data_format,
                     out);
}

H
hong 已提交
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
}  // namespace phi

#ifdef PADDLE_WITH_HIP
PD_REGISTER_KERNEL(conv2d,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::ConvCudnnKernel,
                   float,
                   phi::dtype::float16) {}

PD_REGISTER_KERNEL(conv3d,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::Conv3DCudnnKernel,
                   float,
                   phi::dtype::float16) {}
H
hong 已提交
634 635 636 637 638 639 640 641

PD_REGISTER_KERNEL(depthwise_conv2d,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::DepthwiseConvCudnnKernel,
                   float,
                   phi::dtype::float16) {}

H
hong 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
#else
#if CUDNN_VERSION_MIN(8, 1, 0)
PD_REGISTER_KERNEL(conv2d,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::ConvCudnnKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}

PD_REGISTER_KERNEL(conv3d,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::Conv3DCudnnKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
#else
PD_REGISTER_KERNEL(conv2d,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::ConvCudnnKernel,
                   float,
                   double,
                   phi::dtype::float16) {}

PD_REGISTER_KERNEL(conv3d,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::Conv3DCudnnKernel,
                   float,
                   double,
                   phi::dtype::float16) {}
#endif

#endif

// todo register bfloat16