conv.py 51.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define classes of convolutional neural network
16

17
__all__ = [
C
cnn 已提交
18 19 20 21 22 23
    'Conv1D',
    'Conv2D',
    'Conv3D',
    'Conv1DTranspose',
    'Conv2DTranspose',
    'Conv3DTranspose',
24 25 26 27
]

import numpy as np

L
LielinJiang 已提交
28 29
from ...fluid import core
from ...device import get_cudnn_version
30 31 32 33 34 35 36 37 38 39 40 41 42
from ...fluid.dygraph import layers
from ...fluid.initializer import Normal
from .. import functional as F
from ...fluid.layers import utils
from ..functional.conv import _update_padding_nd


def _get_default_param_initializer(num_channels, filter_size):
    filter_elem_num = num_channels * np.prod(filter_size)
    std = (2.0 / filter_elem_num)**0.5
    return Normal(0.0, std, 0)


43 44 45 46 47 48 49 50
def _reverse_repeat_list(t, n):
    """Reverse the order of `t` and repeat each element for `n` times.
    This can be used to translate padding arg used by Conv and Pooling modules
    to the ones used by `F.pad`.
    """
    return list(x for x in reversed(t) for _ in range(n))


L
LielinJiang 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
class _ConvNd(layers.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 transposed,
                 dims,
                 stride=1,
                 padding=0,
                 padding_mode='zeros',
                 output_padding=0,
                 dilation=1,
                 groups=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
        super(_ConvNd, self).__init__()
        assert weight_attr is not False, "weight_attr should not be False in Conv."
        self._param_attr = weight_attr
        self._bias_attr = bias_attr
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._data_format = data_format

76 77 78 79 80 81 82 83 84 85 86 87
        valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
        if padding_mode not in valid_padding_modes:
            raise ValueError(
                "padding_mode must be one of {}, but got padding_mode='{}'".
                format(valid_padding_modes, padding_mode))

        if padding_mode in {'reflect', 'replicate', 'circular'
                            } and not isinstance(padding, np.int):
            raise TypeError(
                "when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
            )

L
LielinJiang 已提交
88 89 90 91 92 93 94
        channel_last = (data_format == "NHWC") or (data_format == "NDHWC") or (
            data_format == "NLC")
        if channel_last:
            self._channel_dim = len(data_format) - 1
        else:
            self._channel_dim = 1

L
LielinJiang 已提交
95 96 97 98 99
        self._stride = utils.convert_to_list(stride, dims, 'stride')
        self._dilation = utils.convert_to_list(dilation, dims, 'dilation')
        self._kernel_size = utils.convert_to_list(kernel_size, dims,
                                                  'kernel_size')
        self._padding = padding
100
        self._padding_mode = padding_mode
L
LielinJiang 已提交
101
        self.output_padding = output_padding
L
LielinJiang 已提交
102
        if dims != 1:
103
            self._updated_padding, self._padding_algorithm = _update_padding_nd(
L
LielinJiang 已提交
104
                padding, channel_last, dims)
L
LielinJiang 已提交
105 106 107 108 109

        if transposed:
            filter_shape = [self._in_channels, out_channels // groups
                            ] + self._kernel_size
        else:
110 111 112 113
            if in_channels % groups != 0:
                raise ValueError("in_channels must be divisible by groups.")

            if padding_mode in {'reflect', 'replicate', 'circular'}:
114 115
                _paired_padding = utils.convert_to_list(padding, dims,
                                                        'padding')
116 117 118
                self._reversed_padding_repeated_twice = _reverse_repeat_list(
                    _paired_padding, 2)

119 120
                self._updated_padding, self._padding_algorithm = _update_padding_nd(
                    0, channel_last, dims)
L
LielinJiang 已提交
121

L
LielinJiang 已提交
122 123 124
            filter_shape = [out_channels, in_channels // groups
                            ] + self._kernel_size

L
LielinJiang 已提交
125 126 127 128 129 130 131
        def _get_default_param_initializer():
            if transposed:
                return None
            filter_elem_num = np.prod(self._kernel_size) * self._in_channels
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

L
LielinJiang 已提交
132
        self.weight = self.create_parameter(
L
LielinJiang 已提交
133 134 135
            shape=filter_shape,
            attr=self._param_attr,
            default_initializer=_get_default_param_initializer())
L
LielinJiang 已提交
136 137 138
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels], is_bias=True)

L
LielinJiang 已提交
139 140 141 142 143 144
        cudnn_version = get_cudnn_version()

        self._use_cudnn = True if (core.is_compiled_with_cuda() and
                                   cudnn_version is not None) else False

        self._op_type = "conv" + str(dims) + 'd'
L
LielinJiang 已提交
145 146 147 148
        if self._op_type == 'conv2d' and (in_channels == groups and
                                          in_channels != 1 and
                                          out_channels % in_channels == 0):
            self._op_type = 'depthwise_conv2d'
L
LielinJiang 已提交
149 150
            self._use_cudnn = False

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    def extra_repr(self):
        main_str = '{_in_channels}, {_out_channels}, kernel_size={_kernel_size}'
        if self._stride != [1] * len(self._stride):
            main_str += ', stride={_stride}'
        if self._padding != 0:
            main_str += ', padding={_padding}'
        if self._padding_mode is not 'zeros':
            main_str += ', padding_mode={_padding_mode}'
        if self.output_padding != 0:
            main_str += ', output_padding={_output_padding}'
        if self._dilation != [1] * len(self._dilation):
            main_str += ', dilation={_dilation}'
        if self._groups != 1:
            main_str += ', groups={_groups}'
        main_str += ', data_format={_data_format}'
        return main_str.format(**self.__dict__)

L
LielinJiang 已提交
168

C
cnn 已提交
169
class Conv1D(_ConvNd):
170
    r"""
C
cnn 已提交
171
    This interface is used to construct a callable object of the ``Conv1D`` class.
W
whs 已提交
172 173 174 175 176 177 178 179 180 181 182
    For more details, refer to code examples.
    The convolution1D layer calculates the output based on the input, filter
    and stride, padding, dilation, groups parameters. Input and
    Output are in NCL format or NLC format, where N is batch size, C is the number of
    the feature map, L is the length of the feature map.
    Filter's shape is [MCK] , where M is the number of output feature map,
    C is the number of input feature map, K is the size of the kernel. 
    If the groups is greater than 1, C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
W
whs 已提交
183 184 185

    For each input :math:`X` , the equation is:

W
whs 已提交
186
    .. math::
W
whs 已提交
187 188 189

        Out = \sigma (W \\ast X + b)

W
whs 已提交
190
    Where:
W
whs 已提交
191

W
whs 已提交
192 193 194 195 196 197
    * :math:`X`: Input value, a ``Tensor`` with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCK] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
W
whs 已提交
198

W
whs 已提交
199
    Example:
W
whs 已提交
200

W
whs 已提交
201
        - Input:
W
whs 已提交
202

W
whs 已提交
203
          Input shape: :math:`(N, C_{in}, L_{in})`
W
whs 已提交
204

W
whs 已提交
205
          Kernel shape: :math:`(C_{out}, C_{in}, K)`
W
whs 已提交
206

W
whs 已提交
207
        - Output:
W
whs 已提交
208

W
whs 已提交
209
          Output shape: :math:`(N, C_{out}, L_{out})`
W
whs 已提交
210

W
whs 已提交
211
        Where
W
whs 已提交
212

W
whs 已提交
213
        .. math::
W
whs 已提交
214

W
whs 已提交
215
            L_{out}&= \\frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
216

W
whs 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
    Parameters:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of filter. It is as same as the output
            feature map.
        kernel_size (int|tuple|list): The filter size. If kernel_size is a tuple,
            it must contain one integer, (kernel_size).
        stride (int|tuple|list, optional): The stride size. If stride is a tuple, it must
            contain one integer, (stride_size). Default: 1.
        padding(int|str|tuple|list, optional): The size of zeros to be padded. It must be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            The default value is 0.
        dilation (int|tuple|list, optional): The dilation size. If dilation is a tuple, it must
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        padding_mode(str, optional): Four modes: 'zeros', 'reflect', 'replicate', 'circular'.
            When in 'zeros' mode, this op uses zeros to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'zeros'.
L
LielinJiang 已提交
243
        weight_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
W
whs 已提交
244 245 246 247 248 249 250 251 252
            of conv1d. If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv1d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
W
whs 已提交
253

W
whs 已提交
254 255 256
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
W
whs 已提交
257

W
whs 已提交
258 259 260 261 262 263
    Shape:
        - x: 3-D tensor with shape: (batch, in_channels, length) or (batch, length, in_channels).
        - output: 3-D tensor with same shape as input x.
    
    Raises:
        None
W
whs 已提交
264

W
whs 已提交
265 266
    Examples:
        .. code-block:: python
W
whs 已提交
267

W
whs 已提交
268
          import paddle
C
cnn 已提交
269
          from paddle.nn import Conv1D
W
whs 已提交
270 271 272 273 274 275 276 277 278 279 280 281
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
282
          conv = Conv1D(3, 2, 3)
W
whs 已提交
283 284
          conv.weight.set_value(w)
          y_t = conv(x_t)
W
whs 已提交
285
          print(y_t)
W
whs 已提交
286 287
          # [[[133. 238.]
          #   [160. 211.]]]
288
    """
S
swtkiwi 已提交
289

290
    def __init__(self,
291 292 293
                 in_channels,
                 out_channels,
                 kernel_size,
294
                 stride=1,
295
                 padding=0,
296 297
                 dilation=1,
                 groups=1,
298 299
                 padding_mode='zeros',
                 weight_attr=None,
300
                 bias_attr=None,
L
LielinJiang 已提交
301
                 data_format="NCL"):
C
cnn 已提交
302
        super(Conv1D, self).__init__(
303 304 305 306
            in_channels,
            out_channels,
            kernel_size,
            False,
L
LielinJiang 已提交
307
            1,
308 309 310 311 312 313 314 315
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
316

317
    def forward(self, x):
L
LielinJiang 已提交
318 319
        padding = 0
        if self._padding_mode != "zeros":
320
            x = F.pad(x,
W
whs 已提交
321
                      self._reversed_padding_repeated_twice,
322 323
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
324 325
        else:
            padding = self._padding
326

L
LielinJiang 已提交
327
        out = F.conv1d(
328
            x,
329 330
            self.weight,
            bias=self.bias,
L
LielinJiang 已提交
331
            padding=padding,
332 333 334 335 336 337 338
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


C
cnn 已提交
339
class Conv1DTranspose(_ConvNd):
340
    r"""
C
cnn 已提交
341
    This interface is used to construct a callable object of the ``Conv1DTranspose`` class.
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
    For more details, refer to code examples.
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Kernel value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' of 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
          and :math:`L^\prime_{out} + stride`. conv1d_transpose can compute the kernel size automatically.

    Args:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of the filter. It is as same as the output
            feature map.
        kernel_size(int|tuple|list, optional): The filter size. If kernel_size is a tuple,
            it must contain one integers, (kernel_size). None if
            use output size to calculate kernel_size. Default: None. kernel_size and
            output_size should not be None at the same time.
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
            If stride is a tuple, it must contain one integer, (stride_size).
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
             If it is a tuple, it must contain one integer. Default: 0.
C
cnn 已提交
413
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        bias(bool, optional): Whether to use bias. Default: True.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a tuple, it must contain one integer, (dilation_size).
            Default: dilation = 1.
        weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv1d_transpose. If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv1d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:
W
whs 已提交
438 439 440

        - x(Tensor): 3-D tensor with shape (batch, in_channels, length) when data_format is "NCL" or shape (batch, length, in_channels) when data_format is "NLC".
        - output_size(int|tuple|list, optional): The output image size. If output size is a tuple, it must contain one integer, (feature_length). None if use kernel_size, padding, output_padding and stride to calculate output_size. If output_size and kernel_size are specified at the same time, They should follow the formula above. Default: None. output_size and kernel_size should not be None at the same time.
441 442 443 444 445 446
        - output(Tensor): 3-D tensor with same shape as input x.

    Examples:
       .. code-block:: python

          import paddle
C
cnn 已提交
447
          from paddle.nn import Conv1DTranspose
448 449 450 451 452 453 454 455 456
          import numpy as np
          
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2]]]).astype(np.float32)
          # shape: (2, 1, 2)
          y=np.array([[[7, 0]],
                      [[4, 2]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
457
          conv = Conv1DTranspose(2, 1, 2)
458 459
          conv.weight.set_value(y)
          y_t = conv(x_t)
W
whs 已提交
460
          print(y_t)
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
          
          # [[[60. 16. 99. 75.  4.]]]
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 output_padding=0,
                 groups=1,
                 dilation=1,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCL"):
C
cnn 已提交
477
        super(Conv1DTranspose, self).__init__(
L
LielinJiang 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490
            in_channels,
            out_channels,
            kernel_size,
            True,
            1,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
491 492

    def forward(self, x, output_size=None):
493
        out = F.conv1d_transpose(
494 495 496 497
            x,
            self.weight,
            bias=self.bias,
            output_size=output_size,
L
LielinJiang 已提交
498 499 500 501 502 503 504 505 506
            output_padding=self.output_padding,
            padding=self._padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
        return out


C
cnn 已提交
507
class Conv2D(_ConvNd):
508
    r"""
C
cnn 已提交
509
    This interface is used to construct a callable object of the ``Conv2D`` class.
L
LielinJiang 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
    For more details, refer to code examples.
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:

    ..  math::

        Out = \sigma (W \\ast X + b)

    Where:

    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    
    Parameters:
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
        stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
            contain three integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. The default value is 1.
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
557
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
L
LielinJiang 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
        data_format(str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".

    Attribute:

        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:

        - x: :math:`(N, C_{in}, H_{in}, W_{in})`

        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        ..  math::

           H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1

           W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1

    Examples:

        .. code-block:: python

          import paddle
          import paddle.nn as nn
C
cnn 已提交
602 603 604
          
          paddle.disable_static()
          
605
          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
L
LielinJiang 已提交
606
          
C
cnn 已提交
607
          conv = nn.Conv2D(4, 6, (3, 3))
L
LielinJiang 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
          # (2, 6, 6, 6)
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 padding_mode='zeros',
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW"):
C
cnn 已提交
626
        super(Conv2D, self).__init__(
L
LielinJiang 已提交
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
            in_channels,
            out_channels,
            kernel_size,
            False,
            2,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
647 648

        out = F.conv._conv_nd(
L
LielinJiang 已提交
649 650 651
            x,
            self.weight,
            bias=self.bias,
652
            stride=self._stride,
653
            padding=self._updated_padding,
L
LielinJiang 已提交
654
            padding_algorithm=self._padding_algorithm,
655 656
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
657 658 659 660
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn)
661 662 663
        return out


C
cnn 已提交
664
class Conv2DTranspose(_ConvNd):
665
    r"""
C
cnn 已提交
666
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
    For more details, refer to code examples.
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
    For each input :math:`X`, the equation is:
682 683 684

    ..  math::

685
        Out = \sigma (W \\ast X + b)
686

687
    Where:
688

689 690 691 692 693 694
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
695
    
696
    Parameters:
L
LielinJiang 已提交
697 698 699 700 701
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
        kernel_size(int|list|uple): The kernel size. If kernel_size is a tuple,
            it must contain two integers, (kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
702 703 704
        stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
705 706 707 708 709 710 711
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` on both sides 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
712 713
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
L
LielinJiang 已提交
714
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
715 716
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
717
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
718 719 720 721 722
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
723
        weight_attr(ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
724 725 726
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
727
        bias_attr(ParamAttr|bool, optional): The attribute for the bias of conv2d_transpose.
728 729 730 731
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
732
        data_format(str, optional): Data format that specifies the layout of input.
733
            It can be "NCHW" or "NHWC". Default: "NCHW".
734

735
    Attribute:
736

737
        **weight** (Parameter): the learnable weights of filters of this layer.
738

739
        **bias** (Parameter or None): the learnable bias of this layer.
740

L
LielinJiang 已提交
741
    Shape:
742

L
LielinJiang 已提交
743
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
744

L
LielinJiang 已提交
745
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
746

L
LielinJiang 已提交
747
        Where
748 749 750 751 752 753 754 755 756 757 758

        ..  math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1

           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1

           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] )

           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

759
    Examples:
760

761
       .. code-block:: python
762

L
LielinJiang 已提交
763 764
          import paddle
          import paddle.nn as nn
C
cnn 已提交
765 766
          
          paddle.disable_static()
767 768 769

          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)

C
cnn 已提交
770
          conv = nn.Conv2DTranspose(4, 6, (3, 3))
L
LielinJiang 已提交
771 772 773
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
774 775 776 777
          # (2, 6, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
778 779 780
                 in_channels,
                 out_channels,
                 kernel_size,
781
                 stride=1,
L
LielinJiang 已提交
782 783
                 padding=0,
                 output_padding=0,
784 785
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
786
                 weight_attr=None,
787
                 bias_attr=None,
L
LielinJiang 已提交
788
                 data_format="NCHW"):
C
cnn 已提交
789
        super(Conv2DTranspose, self).__init__(
L
LielinJiang 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
            in_channels,
            out_channels,
            kernel_size,
            True,
            2,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

    def forward(self, x, output_size=None):
805
        if output_size is None:
L
LielinJiang 已提交
806
            output_padding = self.output_padding
807
        else:
L
LielinJiang 已提交
808
            output_padding = 0
809

810
        out = F.conv2d_transpose(
L
LielinJiang 已提交
811
            x,
812 813 814
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
815
            output_padding=output_padding,
816 817 818
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
819
            output_size=output_size,
820 821 822 823
            data_format=self._data_format)
        return out


C
cnn 已提交
824
class Conv3D(_ConvNd):
825
    r"""
826 827
    **Convlution3d Layer**
    The convolution3d layer calculates the output based on the input, filter
828 829 830 831 832 833 834 835 836
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
    For each input :math:`X`, the equation is:
837 838 839

    ..  math::

840
        Out = \sigma (W \\ast X + b)
841

842
    In the above equation:
843

844 845 846 847 848 849
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
850

851
    Parameters:
852 853
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
854 855
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
        stride(int|list|tuple, optional): The stride size. If stride is a tuple, it must
856 857
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. The default value is 1.
858
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
859 860 861 862 863 864
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
865
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
866 867
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
868
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
869 870 871 872
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
873 874
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
875 876 877 878
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
879
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
880 881 882 883
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
884
        data_format(str, optional): Data format that specifies the layout of input.
885
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
886

887
    Attribute:
888

889
        **weight** (Parameter): the learnable weights of filters of this layer.
890

891
        **bias** (Parameter): the learnable bias of this layer.
892

893
    Shape:
894

895
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
896

897
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
898

899
        Where
900 901 902 903 904 905 906 907 908

        ..  math::

           D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1

           H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1

           W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (kernel\_size[2] - 1) + 1))}{strides[2]} + 1

909 910 911
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
912

913
    Examples:
914

915
        .. code-block:: python
916

917 918
          import paddle
          import paddle.nn as nn
C
cnn 已提交
919 920
          
          paddle.disable_static()
921 922

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
923
          
C
cnn 已提交
924
          conv = nn.Conv3D(4, 6, (3, 3, 3))
925 926 927
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
928 929 930 931
          # (2, 6, 6, 6, 6)
    """

    def __init__(self,
932 933 934
                 in_channels,
                 out_channels,
                 kernel_size,
935
                 stride=1,
L
LielinJiang 已提交
936
                 padding=0,
937 938
                 dilation=1,
                 groups=1,
939 940
                 padding_mode='zeros',
                 weight_attr=None,
941
                 bias_attr=None,
942
                 data_format="NCDHW"):
C
cnn 已提交
943
        super(Conv3D, self).__init__(
944 945 946 947 948 949 950 951 952 953 954 955 956
            in_channels,
            out_channels,
            kernel_size,
            False,
            3,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)
957

958 959 960 961 962 963
    def forward(self, x):
        if self._padding_mode != 'zeros':
            x = F.pad(x,
                      self._reversed_padding_repeated_twice,
                      mode=self._padding_mode,
                      data_format=self._data_format)
L
LielinJiang 已提交
964 965

        out = F.conv._conv_nd(
966
            x,
967 968 969
            self.weight,
            bias=self.bias,
            stride=self._stride,
970
            padding=self._updated_padding,
L
LielinJiang 已提交
971
            padding_algorithm=self._padding_algorithm,
972 973
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
974 975 976 977
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn)
978 979 980
        return out


C
cnn 已提交
981
class Conv3DTranspose(_ConvNd):
982
    r"""
983 984 985 986 987 988 989 990 991 992 993 994 995
    **Convlution3D transpose layer**
    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    For each input :math:`X`, the equation is:
996 997 998
    
    ..  math::

999
        Out = \sigma (W \\ast X + b)
1000

1001
    In the above equation:
1002

1003 1004 1005 1006 1007 1008
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
1009

1010
    **Note**:
1011

1012
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
1013
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
1014
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
1015 1016 1017 1018 1019 1020
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
1021
          conv3d_transpose can compute the kernel size automatically.
1022

1023
    Parameters:
L
LielinJiang 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a tuple,
            it must contain three integers, (kernel_size_D, kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
1033 1034 1035 1036 1037 1038 1039
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
L
LielinJiang 已提交
1040 1041 1042
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
        dilation(int|list|tuple, optional): The dilation size. If dilation is a tuple, it must
1043 1044
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
1045
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1046 1047 1048 1049 1050
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            The default value is 1.
1051
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
1052 1053 1054
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. The default value is None.
1055
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
1056 1057 1058 1059
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
L
LielinJiang 已提交
1060 1061 1062 1063 1064
        output_size(int|list|tuple, optional): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None.
1065
        data_format(str, optional): Data format that specifies the layout of input.
1066
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
1067

1068
    Attribute:
1069

1070
        **weight** (Parameter): the learnable weights of filters of this layer.
1071

1072
        **bias** (Parameter): the learnable bias of this layer.
1073

L
LielinJiang 已提交
1074
    Shape:
1075

L
LielinJiang 已提交
1076
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
1077

L
LielinJiang 已提交
1078
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
1079

L
LielinJiang 已提交
1080
        Where
1081 1082 1083 1084 1085 1086 1087 1088 1089

        ..  math::

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1
           
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1
           
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (kernel\_size[2] - 1) + 1
           
1090 1091 1092 1093
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
1094

1095
       .. code-block:: python
1096

L
LielinJiang 已提交
1097 1098
          import paddle
          import paddle.nn as nn
C
cnn 已提交
1099 1100
          
          paddle.disable_static()
1101 1102

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
L
LielinJiang 已提交
1103
          
C
cnn 已提交
1104
          conv = nn.Conv3DTranspose(4, 6, (3, 3, 3))
L
LielinJiang 已提交
1105 1106 1107
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
1108 1109 1110 1111
          # (2, 6, 10, 10, 10)
    """

    def __init__(self,
L
LielinJiang 已提交
1112 1113 1114
                 in_channels,
                 out_channels,
                 kernel_size,
1115
                 stride=1,
L
LielinJiang 已提交
1116 1117
                 padding=0,
                 output_padding=0,
1118 1119
                 dilation=1,
                 groups=1,
L
LielinJiang 已提交
1120
                 weight_attr=None,
1121
                 bias_attr=None,
L
LielinJiang 已提交
1122
                 data_format="NCDHW"):
C
cnn 已提交
1123
        super(Conv3DTranspose, self).__init__(
L
LielinJiang 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
            in_channels,
            out_channels,
            kernel_size,
            True,
            3,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format)

1138
    def forward(self, x, output_size=None):
1139
        if output_size is None:
L
LielinJiang 已提交
1140
            output_padding = self.output_padding
1141
        else:
L
LielinJiang 已提交
1142
            output_padding = 0
1143

1144
        out = F.conv3d_transpose(
L
LielinJiang 已提交
1145
            x,
1146 1147 1148
            self.weight,
            bias=self.bias,
            padding=self._padding,
L
LielinJiang 已提交
1149
            output_padding=output_padding,
1150 1151 1152
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
L
LielinJiang 已提交
1153
            output_size=output_size,
1154 1155
            data_format=self._data_format)
        return out