pool_grad_kernel.cc 4.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/pool_grad_kernel.h"

#include "paddle/phi/backends/onednn/onednn_reuse.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {
template <typename T, typename Context>
void Pool2dGradKernel(const Context& dev_ctx,
                      const DenseTensor& x,
G
Galaxy1458 已提交
24
                      const DenseTensor& out UNUSED,
25 26 27 28 29 30
                      const DenseTensor& dout,
                      const IntArray& kernel_size,
                      const std::vector<int>& strides,
                      const std::vector<int>& paddings,
                      bool ceil_mode,
                      bool exclusive,
G
Galaxy1458 已提交
31
                      const std::string& data_format UNUSED,
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
                      const std::string& pooling_type,
                      bool global_pooling,
                      bool adaptive,
                      const std::string& padding_algorithm,
                      DenseTensor* dx) {
  funcs::PoolingOneDNNHandler<T> handler(dev_ctx,
                                         pooling_type,
                                         kernel_size,
                                         strides,
                                         paddings,
                                         global_pooling,
                                         padding_algorithm,
                                         ceil_mode,
                                         exclusive,
                                         adaptive,
                                         &x,
                                         &dout,
                                         dx);

  auto diff_dst_memory = handler.AcquireDiffDstMemory(&dout);
  auto diff_src_memory = handler.AcquireDiffSrcMemory(dx);

  auto pool_bwd_p = handler.AcquireBackwardPrimitive();

  auto& astream = OneDNNContext::tls().get_stream();
  if (pooling_type == "max") {
    // Max - pooling needs Workspace
    auto workspace_memory = handler.AcquireWorkspaceMemory(dev_ctx, "Out");
    pool_bwd_p->execute(astream,
                        {{DNNL_ARG_DIFF_SRC, *diff_src_memory},
                         {DNNL_ARG_DIFF_DST, *diff_dst_memory},
                         {DNNL_ARG_WORKSPACE, *workspace_memory}});
  } else {
    // Average Pooling
    pool_bwd_p->execute(astream,
                        {{DNNL_ARG_DIFF_SRC, *diff_src_memory},
                         {DNNL_ARG_DIFF_DST, *diff_dst_memory}});
  }
  astream.wait();

  dx->set_mem_desc(diff_src_memory->get_desc());
}
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

phi::KernelKey PoolOpGradGetKernelTypeForVar(
    const GetKernelTypeForVarContext* ctx) {
  const DenseTensor& tensor = ctx->GetTensor();
  const KernelKey& expected_kernel_type = ctx->GetKernelKey();
#ifdef PADDLE_WITH_MKLDNN
  if ((expected_kernel_type.layout() == phi::DataLayout::ONEDNN) &&
      (tensor.layout() != phi::DataLayout::ONEDNN)) {
    const AttributeMap& attrs = ctx->GetAttrs();
    auto it = attrs.find("data_format");
    const std::string data_format = PADDLE_GET_CONST(std::string, it->second);
    return phi::KernelKey(tensor.place(),
                          phi::StringToDataLayout(data_format),
                          expected_kernel_type.dtype());
  }
#endif
  return phi::KernelKey(
      tensor.place(), tensor.layout(), expected_kernel_type.dtype());
}

94 95 96 97 98 99 100
}  // namespace phi

PD_REGISTER_KERNEL(pool2d_grad,
                   OneDNN,
                   ONEDNN,
                   phi::Pool2dGradKernel,
                   float,
101 102 103
                   phi::dtype::bfloat16) {
  kernel->get_kerneltype_forvar_fn_ = phi::PoolOpGradGetKernelTypeForVar;
}