process_group.py 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import paddle
import paddle.fluid.core as core
from ..collective import _get_global_env
from ..collective import _new_ring_id
J
Jiabin Yang 已提交
19
from ...fluid.framework import _non_static_mode
20 21 22 23
from ...fluid.layers.tensor import fill_constant


def get_all_process_groups():
24 25
    global _g_process_group_map
    return _g_process_group_map.values()
26 27


28
def get_process_group(group_id, g_process_group_map=None):
29
    global _g_process_group_map
30 31 32 33
    return _g_process_group_map.get(
        group_id,
        None) if g_process_group_map is None else g_process_group_map.get(
            group_id, None)
34 35


J
JZ-LIANG 已提交
36
def get_world_process_group():
37 38 39 40
    global _g_process_group_map
    return _g_process_group_map[0]


41
def new_process_group(ranks):
42
    global _g_process_group_map
43 44 45 46 47 48 49 50 51 52 53 54 55 56
    # A key constructed from ranks is used for avoiding duplication 
    new_key = ''.join(map(str, sorted(ranks)))
    for pg_id, pg in _g_process_group_map.items():
        cur_key = ''.join(map(str, sorted(pg.ranks)))
        if pg_id != 0 and new_key == cur_key:
            return pg
    # If not matching the existing one, construt a new process group
    num_groups = len(_g_process_group_map)
    # Note: our process group may interfere with the original implementation
    # so the created group id should start from the original _new_ring_id()
    group_id = _new_ring_id() + num_groups + 1
    new_pg = ProcessGroup(group_id, ranks)
    _g_process_group_map[group_id] = new_pg
    return new_pg
57 58 59 60 61 62 63 64 65 66


# This implementation refers to lots of Paddle/python/paddle/distributed/collective.py,
# Fleet also has a collective helper which uses ops to initialize communication in 
# Paddle/python/paddle/distributed/fleet/meta_optimizers/common.py. We use the first one
# because it seems simple. This should be enhanced to manage the process membership and 
# the instantiation process in a more general way. In the future, the process group may 
# handle the communication implementation choice.
class ProcessGroup:
    def __init__(self, group_id, ranks):
67 68
        if group_id == 0 and get_process_group(0) is not None:
            assert group_id != 0, "Process group id 0 is reserved for all ranks."
69 70
        self._group_id = group_id
        self._ranks = sorted(ranks)
71 72 73 74
        # Add the current ranks into group 0
        if group_id != 0:
            global _g_process_group_map
            _g_process_group_map[0].add_ranks(ranks)
75 76 77 78 79 80
        self._is_instantiate = False

    @property
    def id(self):
        return self._group_id

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    @property
    def ranks(self):
        return self._ranks

    @property
    def nranks(self):
        return len(self._ranks)

    def add_ranks(self, new_ranks):
        if set(new_ranks) <= set(self.ranks):
            return
        else:
            assert self.is_instantiate() == False, \
                "Cannot add new ranks after instantiating the process group"
        self._ranks.extend(new_ranks)
        self._ranks = sorted(list(set(self.ranks)))
97 98

    def local_rank(self, global_rank):
99 100
        if global_rank in self.ranks:
            return self.ranks.index(global_rank)
101 102 103 104 105 106 107 108 109 110 111 112 113 114
        else:
            assert False, \
                "Rank {} doesn't belong to this group".format(global_rank)

    def is_instantiate(self):
        return self._is_instantiate

    def instantiate(self):
        if self._is_instantiate:
            return
        ring_id = self.id
        genv = _get_global_env()
        global_rank = genv.rank

115
        if self.nranks >= 2:
116
            strategy = core.ParallelStrategy()
117
            strategy.nranks = self.nranks
118 119
            strategy.local_rank = self.local_rank(global_rank)
            strategy.trainer_endpoints = [
120
                genv.trainer_endpoints[i] for i in self.ranks
121 122 123 124 125 126 127 128 129 130 131 132 133 134
            ]
            strategy.current_endpoint = genv.current_endpoint
            strategy.nrings = 1

            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(genv.device_id)
                core.NCCLParallelContext(strategy,
                                         place).init_with_ring_id(ring_id)
            else:
                assert False, ("No CUDA device found")

        # TODO(shenliang03): This is a temporary solution to solve the problem of 
        # hang caused by cross-creation of new_group
        tmp = paddle.to_tensor(
J
Jiabin Yang 已提交
135
            [1], dtype="int32") if _non_static_mode() else fill_constant(
136 137 138 139 140 141
                [0], dtype="int32", value="1")
        paddle.distributed.all_reduce(tmp, use_calc_stream=True)
        paddle.distributed.wait(tmp)

        self._is_instantiate = True

142 143 144 145 146 147 148 149 150 151
    # def __eq__(self, other):
    #     if not isinstance(other, ProcessGroup):
    #         return False
    #     if self.id != other.id:
    #         return False
    #     return True

    # def __ne__(self, other):
    #     return not self.__eq__(other)

152 153
    def __str__(self):
        string = "id: {}, nranks: {}, ranks: {}.".format(
154
            self.id, self.nranks, ", ".join(map(str, self.ranks)))
155
        return string
156 157


158 159 160
# Note that Process group 0 is reserved for representing all ranks.
# At the begining, group 0 is empty and new ranks will be added automatically. 
_g_process_group_map = {}
161
_g_process_group_map[0] = ProcessGroup(0, [])