nn.py 82.1 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27

# Copyright(c) 2019 PaddlePaddle Authors.All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0(the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http:  // www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
28 29 30 31 32 33 34
"""
Contrib layers just related to the neural network.
"""

from __future__ import print_function

import os
35 36
import six
import warnings
37
import inspect
38 39

import numpy as np
40
import paddle
41
from paddle.fluid.layer_helper import LayerHelper
42
from paddle.fluid.layers import utils
Z
zhoushiyu 已提交
43
from ... import unique_name
C
Chengmo 已提交
44
from paddle.fluid.initializer import Normal, Constant, NumpyArrayInitializer
45
from paddle.fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
46 47

from paddle.fluid import core
Z
Zhang Ting 已提交
48
from paddle.fluid.param_attr import ParamAttr
49

C
Chengmo 已提交
50
from paddle.fluid.framework import Variable, convert_np_dtype_to_dtype_
C
Chengmo 已提交
51
from paddle.fluid.layers import slice, reshape
52
import warnings
W
wanghuancoder 已提交
53
from paddle import _C_ops
54

55
__all__ = [
56 57
    'fused_elemwise_activation', 'sequence_topk_avg_pooling', 'var_conv_2d',
    'match_matrix_tensor', 'tree_conv', 'fused_embedding_seq_pool',
58
    'multiclass_nms2', 'search_pyramid_hash', 'shuffle_batch', 'partial_concat',
59
    'sparse_embedding', 'partial_sum', 'tdm_child', 'rank_attention',
60
    'tdm_sampler', 'batch_fc', '_pull_box_extended_sparse', 'bilateral_slice',
Z
Zhang Ting 已提交
61
    'correlation', 'fused_bn_add_act'
62
]
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126


def fused_elemwise_activation(x,
                              y,
                              functor_list,
                              axis=-1,
                              scale=0.0,
                              save_intermediate_out=True):
    """
    **Fused elementwise_add/mul and activation layers**

    This function computes an elementwise_add/mul cooperated with an activation.

    .. math::

        out = Unary(Binary(x, y))

    or

    .. math::

        out = Binary(x, Unary(y))

    Unary operators can be: `scale`, `relu`, `tanh`. Binary operators can be:
    `elementwise_add`, `elementwise_mul`.

    Args:
        x (Variable): left operation of the binary operator.
        y (Variable): right operator of the binary operator.
        functor_list (list of str): types of operator which will be executed
            by this layer. For example, ['elementwise_add', 'relu']
            (out = elementwise_add(x, relu(y))),
            or ['relu', 'elemmentwise_add'] (out = relu(elementwise_add(x, y))).
        axis (int32, default -1): axis of elementwise op.
        scale (float32, default 0): parameter of scale op.
        save_intermediate_out (bool, default True): whether to save the
            intermediate result, Unary(y) or Binary(x, y).

    Returns:
        Variable: The computation result.
    """
    if isinstance(functor_list, str):
        functor_list = functor_list.split(',')

    if not isinstance(functor_list, list) or len(functor_list) != 2:
        raise ValueError(
            'functor_list should be a list of str, and the length should be 2.')

    helper = LayerHelper('fused_elemwise_activation', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    intermediate_out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fused_elemwise_activation',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out,
                 'IntermediateOut': intermediate_out},
        attrs={
            'axis': axis,
            'scale': scale,
            'save_intermediate_out': save_intermediate_out,
            'functor_list': functor_list
        })
    return out
127 128 129 130 131 132 133 134 135 136 137 138 139


def var_conv_2d(input,
                row,
                col,
                input_channel,
                output_channel,
                filter_size,
                stride=1,
                param_attr=None,
                act=None,
                dtype='float32',
                name=None):
140
    r"""
141 142
    The var_conv_2d layer calculates the output base on the :attr:`input` with variable length,
    row, col, input channel, filter size and strides. Both :attr:`input`, :attr:`row`,
C
Chengmo 已提交
143 144
    and :attr:`col` are 1-level LodTensor. The convolution operation is same as conv2d layer with
    padding. Besides, input.dims[1] should be 1.
145 146

    .. code-block:: text
C
Chengmo 已提交
147

148 149 150
            If input_channel is 2 and given row lodTensor and col lodTensor as follows:
                row.lod = [[5, 4]]
                col.lod = [[6, 7]]
C
Chengmo 已提交
151
            input is a lodTensor:
152 153
                input.lod = [[60, 56]]	# where 60 = input_channel * 5 * 6
                input.dims = [116, 1]	# where 116 = 60 + 56
C
Chengmo 已提交
154

155
            If set output_channel is 3, filter_size is [3, 3], stride is [1, 1]:
C
Chengmo 已提交
156 157
                # where 90 = output_channel * [(5-1)/stride + 1] * [(6-1)/stride + 1]
                output.lod = [[90, 84]]
158 159 160
                output.dims = [174, 1]  # where 174 = 90 + 84

    Args:
T
tianshuo78520a 已提交
161 162 163
        input (Variable): The input should be 1-level LodTensor with dims[1] equals 1.
        row (Variable): The row should be 1-level LodTensor to provide height information.
        col (Variable): The col should be 1-level LodTensor to provide width information.
164 165 166 167 168 169 170 171 172 173 174 175
        input_channel (int): The number of input channel.
        output_channel (int): The number of output channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of var_conv2d. If it is set to None or one attribute of ParamAttr, var_conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
176 177
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{
  0.5}`. Default: None.
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
        dtype ('float32'): The data type of parameter and output.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None

    Returns:
        Variable: Output variable with LoD specified by this layer.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers
            from paddle.fluid import contrib

            x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
            row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
            col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
C
Chengmo 已提交
197
            out = contrib.var_conv_2d(input=x_lod_tensor,
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
                                     row=row_lod_tensor,
                                     col=col_lod_tensor,
                                     input_channel=3,
                                     output_channel=5,
                                     filter_size=[3, 3],
                                     stride=1)
    """
    helper = LayerHelper('var_conv_2d', **locals())
    x_shape = list(input.shape)
    assert len(x_shape) == 2

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')

    filter_shape = [
        int(output_channel),
        int(input_channel) * filter_size[0] * filter_size[1]
    ]
    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype, )

    conv_res = helper.create_variable_for_type_inference(dtype)
    tmp_res = helper.create_variable_for_type_inference(
        dtype, stop_gradient=True)

    helper.append_op(
        type='var_conv_2d',
        inputs={
            'X': input,
            'ROW': row,
            'COLUMN': col,
            'W': filter_param,
        },
        outputs={"Out": conv_res,
                 "Col": tmp_res},
        attrs={
            'InputChannel': input_channel,
            'OutputChannel': output_channel,
            'StrideH': stride[0],
            'StrideW': stride[1],
            'KernelH': filter_size[0],
            'KernelW': filter_size[1],
        })

    return helper.append_activation(conv_res)


def match_matrix_tensor(x,
                        y,
                        channel_num,
                        act=None,
                        param_attr=None,
                        dtype='float32',
                        name=None):
    """
    Calculate the semantic matching matrix of two word sequences with variable length.
    Given a query A of length `n` and a title B of length `m`, the input shape are respectively
    [n, h] and [m, h], which h is hidden_size. If :attr:`channel_num` is set to 3,
    it will generate a learnable parameter matrix W with shape [h, 3, h].
C
Chengmo 已提交
259 260 261
    Then the semantic matching matrix of query A and title B is calculated by
    A * W * B.T = [n, h]*[h, 3, h]*[h, m] = [n, 3, m]. The learnable parameter matrix `W`
    is equivalent to a fully connected layer in the calculation process. If :attr:`act` is provided,
262 263 264 265 266 267
    the corresponding activation function will be applied to output matrix.
    The :attr:`x` and :attr:`y` should be LodTensor and only one level LoD is supported.

    .. code-block:: text

            Given a 1-level LoDTensor x:
C
Chengmo 已提交
268 269 270 271
                x.lod =  [
                    [2,                     3,                               ]]
                x.data = [[0.3, 0.1], [0.2, 0.3], [
                    0.5, 0.6], [0.7, 0.1], [0.3, 0.4]]
272 273 274 275 276 277
                x.dims = [5, 2]
            y is a Tensor:
                y.lod =  [[3,                                 1,       ]]
                y.data = [[0.1, 0.2], [0.3, 0.7], [0.9, 0.2], [0.4, 0.1]]
                y.dims = [4, 2]
            set channel_num 2, then we get a 1-level LoDTensor:
C
Chengmo 已提交
278 279
                # where 12 = channel_num * x.lod[0][0] * y.lod[0][0]
                out.lod =  [[12, 6]]
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
                out.dims = [18, 1]     # where 18 = 12 + 6

    Args:
        x (Variable): Input variable x which should be 1-level LodTensor.
        y (Variable): Input variable y which should be 1-level LodTensor.
        channel_num (int): The channel number of learnable parameter W.
        act (str, default None): Activation to be applied to the output of this layer.
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        dtype ('float32'): The data type of w data.
        name (str|None): A name for this layer(optional). If set None, the layer will be named automatically. Default: None

    Returns:
        Variable: output with LoD specified by this layer.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers
            from paddle.fluid import contrib

            x_lod_tensor = layers.data(name='x', shape=[10], lod_level=1)
            y_lod_tensor = layers.data(name='y', shape=[10], lod_level=1)
C
Chengmo 已提交
304 305
            out, out_tmp = contrib.match_matrix_tensor(
                x=x_lod_tensor, y=y_lod_tensor, channel_num=3)
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
    """
    helper = LayerHelper('match_matrix_tensor', **locals())

    x_shape = list(x.shape)
    y_shape = list(y.shape)
    assert len(x_shape) == 2 and len(y_shape) == 2 and x_shape[-1] == y_shape[
        -1]

    weight_shape = [x_shape[-1], channel_num, y_shape[-1]]
    w = helper.create_parameter(
        attr=helper.param_attr, shape=weight_shape, dtype=dtype, is_bias=False)
    mm_res = helper.create_variable_for_type_inference(dtype)
    tmp_res = helper.create_variable_for_type_inference(
        dtype, stop_gradient=True)
    helper.append_op(
        type='match_matrix_tensor',
        inputs={
            'X': x,
            'Y': y,
            'W': w,
        },
        outputs={"Out": mm_res,
                 "Tmp": tmp_res},
        attrs={'dim_t': channel_num})

    return helper.append_activation(mm_res), tmp_res


def sequence_topk_avg_pooling(input, row, col, topks, channel_num):
    """
    The :attr:`topks` is a list with incremental values in this function. For each topk,
C
Chengmo 已提交
337 338 339
    it will average the topk features as an output feature for each channel of every
    input sequence. Both :attr:`row` and :attr:`col` are LodTensor, which provide height
    and width information for :attr:`input` tensor. If feature size of input sequence is less
340 341 342 343 344 345 346 347
    than topk, it will padding 0 at the back.

    .. code-block:: text

            If channel_num is 2 and given row LoDTensor and col LoDTensor as follows:
                row.lod = [[5, 4]]
                col.lod = [[6, 7]]

C
Chengmo 已提交
348
            input is a LoDTensor with input.lod[0][i] = channel_num * row.lod[0][i] * col.lod[0][i]
349 350 351 352 353 354 355 356 357
                input.lod = [[60, 56]]  # where 60 = channel_num * 5 * 6
                input.dims = [116, 1]   # where 116 = 60 + 56

            If topks is [1, 3, 5], then we get a 1-level LoDTensor:
                out.lod =  [[5, 4]] 	# share Lod info with row LodTensor
                out.dims = [9, 6]   	# where 6 = len(topks) * channel_num

    Args:
        input (Variable): The input should be 2D LodTensor with dims[1] equals 1.
T
tianshuo78520a 已提交
358
        row (Variable): The row should be 1-level LodTensor to provide the height information
359
                        of the input tensor data.
T
tianshuo78520a 已提交
360
        col (Variable): The col should be 1-level LodTensor to provide the width information
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
                        of the input tensor data.
        topks (list): A list of incremental value to average the topk feature.
        channel_num (int): The number of input channel.

    Returns:
        Variable: output LodTensor specified by this layer.

    Examples:

        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers
            from paddle.fluid import contrib

            x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
            row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
            col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
            out = contrib.sequence_topk_avg_pooling(input=x_lod_tensor,
                                                   row=row_lod_tensor,
                                                   col=col_lod_tensor,
                                                   topks=[1, 3, 5],
                                                   channel_num=5)
    """
    helper = LayerHelper('sequence_topk_avg_pooling', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    pos = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype(), stop_gradient=True)
    helper.append_op(
        type='sequence_topk_avg_pooling',
        inputs={'X': input,
                'ROW': row,
                'COLUMN': col},
        outputs={'Out': out,
                 'pos': pos},
        attrs={'topks': topks,
               'channel_num': channel_num})

    return out
400 401 402 403 404 405 406 407 408 409 410


def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
C
Chengmo 已提交
411
    """
412
    ${comment}
413 414
Args : nodes_vector(${nodes_vector_type}) : $ { nodes_vector_comment }
edge_set(${edge_set_type}) : $ { edge_set_comment }
415 416 417 418 419 420 421 422 423
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
424 425 426
        out(${out_type}): ${
          out_comment
        }
427 428 429 430 431

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
432

433
          # 10 for max_node_size of dataset, 5 for vector width
C
Chengmo 已提交
434 435
          nodes_vector = fluid.layers.data(
              name='vectors', shape=[10, 5], dtype='float32')
436 437
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
C
Chengmo 已提交
438 439
          edge_set = fluid.layers.data(name='edge_set', shape=[
                                       10, 2], dtype='float32')
440 441 442
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
443
#After reshape, output tensor could be nodes_vector for next tree convolution
444 445
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
446
#also output tensor could be pooling(the pooling in paper called global pooling)
447 448
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
    """
449 450 451
    check_type(nodes_vector, 'nodes_vector', (Variable), 'tree_conv')
    check_type(edge_set, 'edge_set', (Variable), 'tree_conv')

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    out = helper.create_variable_for_type_inference(dtype=dtype)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
471 472 473 474 475 476 477 478 479


def fused_embedding_seq_pool(input,
                             size,
                             is_sparse=False,
                             padding_idx=None,
                             combiner='sum',
                             param_attr=None,
                             dtype='float32'):
480
    r"""
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
    **Embedding Sequence pool**

    This layer is the fusion of lookup table and sequence_pool.

    Args:
        input (Variable): Input is a Tensor<int64> Variable, which contains the IDs' information.
            The value of the input IDs should satisfy :math:`0<= id < size[0]`.
        size (tuple|list): The shape of the lookup_table parameter. It should
            have two elements which indicate the size of the dictionary of
            embedding and the size of each embedding vector respectively.
        is_sparse (bool): The flag indicating whether to use sparse update.
            Default: False.
        padding_idx (int|long|None): It will output all-zero padding data whenever
            lookup encounters :math:`padding\_idx` in Ids. If set :attr:`None`, it makes
            no effect to output. If :math:`padding\_idx < 0`, the :math:`padding\_idx`
            will automatically be converted to :math:`size[0] + padding\_idx` to use.
            Default: None.
        combiner (str): The pooling type of sequence_pool, and only support `sum`.
            Default: sum.
        param_attr (ParamAttr): Parameters for this layer.
        dtype (np.dtype|core.VarDesc.VarType|str): The dtype refers to the data type of output
            tensor. It can be float32, float_16, int etc.
    Returns:
        The sequence pooling variable which is a Tensor.
    Examples:
        .. code-block:: python
            import numpy as np
            import paddle.fluid as fluid

            dict_size = 20
C
Chengmo 已提交
511 512
            data_t = fluid.layers.data(
                name='word', shape=[1], dtype='int64', lod_level=1)
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
            padding_idx = np.random.randint(1, 10)
            out = fluid.contrib.fused_embedding_seq_pool(
                input=data_t,
                size=[dict_size, 32],
                param_attr='w',
                padding_idx=padding_idx,
                is_sparse=False)
    """
    helper = LayerHelper('fused_embedding_seq_pool', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    out = helper.create_variable_for_type_inference(dtype)
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
    helper.append_op(
        type='fused_embedding_seq_pool',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': out},
        attrs={
            'is_sparse': is_sparse,
            'combiner': combiner,
            'padding_idx': padding_idx
        })
    return out
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552


def multiclass_nms2(bboxes,
                    scores,
                    score_threshold,
                    nms_top_k,
                    keep_top_k,
                    nms_threshold=0.3,
                    normalized=True,
                    nms_eta=1.,
                    background_label=0,
                    return_index=False,
                    name=None):
    """
    **Multiclass NMS2**
C
Chengmo 已提交
553

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.
    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
C
Chengmo 已提交
571
                           coordinate values and the layout is
572 573
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
C
Chengmo 已提交
574 575
                           M is the number of bounding boxes, C is the
                           class number
576 577 578
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
C
Chengmo 已提交
579 580
                           N is the batch size, C is the class number, M is
                           number of bounding boxes. For each category there
581 582 583 584 585 586 587
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes.
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
                           case with shape [M, C, 4].
C
Chengmo 已提交
588
        background_label (int): The index of background label, the background
589 590 591
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
C
Chengmo 已提交
592
                                 low confidence score. If not provided,
593 594
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
595
                         the confidences after the filtering detections based
596 597 598 599 600 601 602 603 604 605 606
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        return_index(bool): Whether return selected index. Default: False
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
        A tuple with two Variables: (Out, Index) if return_index is True,
C
Chengmo 已提交
607 608 609 610 611 612
        otherwise, a tuple with one Variable(Out) is returned.
        Out: A 2-D LoDTensor with shape [No, 6] represents the detections.
        Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
        or A 2-D LoDTensor with shape [No, 10] represents the detections.
        Each row has 10 values: [label, confidence, x1, y1, x2, y2, x3, y3,
        x4, y4]. No is the total number of detections.
613 614
        If all images have not detected results, all elements in LoD will be
        0, and output tensor is empty (None).
C
Chengmo 已提交
615 616 617 618 619
        Index: Only return when return_index is True. A 2-D LoDTensor with
        shape [No, 1] represents the selected index which type is Integer.
        The index is the absolute value cross batches. No is the same number
        as Out. If the index is used to gather other attribute such as age,
        one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
        N is the batch size and M is the number of boxes.


    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
            boxes = fluid.layers.data(name='bboxes', shape=[81, 4],
                                      dtype='float32', lod_level=1)
            scores = fluid.layers.data(name='scores', shape=[81],
                                      dtype='float32', lod_level=1)
            out, index = fluid.layers.multiclass_nms2(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False,
                                              return_index=True)
    """
    helper = LayerHelper('multiclass_nms2', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    index = helper.create_variable_for_type_inference(dtype='int')
    helper.append_op(
        type="multiclass_nms2",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized
        },
        outputs={'Out': output,
                 'Index': index})
    output.stop_gradient = True
    index.stop_gradient = True

    if return_index:
        return output, index
    return output
A
Aurelius84 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684


def search_pyramid_hash(input,
                        num_emb,
                        space_len,
                        pyramid_layer,
                        rand_len,
                        drop_out_percent,
                        is_training,
                        use_filter,
                        white_list_len,
                        black_list_len,
                        seed,
                        lr,
                        param_attr=None,
                        param_attr_wl=None,
                        param_attr_bl=None,
                        name=None,
C
Chengmo 已提交
685
                        distribute_update_vars=None,
A
Aurelius84 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
                        dtype='float32'):
    """
    **Pyramid hash embedding**

    Args:
        input (Variable): LoDTensor<int32> Variable contained the IDs' information.
        num_emb (int): The embedding size of output.
        space_len (int): The length of pyramid hash embedding space.
        pyramid_layer (int): The number of pyramid layers. It should be greater than 2.
        rand_len (int): The minimum length of pyramid hash cell.
        drop_out_percent (float): The probability of dropping out the input token randomly.
            It should satisfy: [0., 1.]
        is_training (bool): Whether in training or testing phrase.
        use_filter(bool): If set True, the white filter and black filter should be given by
            :attr:`param_attr_wl` and :attr:`param_attr_bl` .
        white_list_len(int): If set :math:`white_list_len>0` , white filter with shape [white_list_len, 1]
            should be provided by param_attr_wl.
        black_list_len(int): If set :math:`black_list_len>0` , black filter with shape [black_list_len, 1]
            should be provided by param_attr_bl.
        seed(int): The number of random seed.
        lr(float): The learning rate of weight created by :attr:`param_attr` with shape [space_len+rand_len, 1]
            in this layer.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        param_attr_wl(ParamAttr): Specified parameters of white filter.
        param_attr_bl(ParamAttr): Specified parameters of black filter.
C
Chengmo 已提交
712
        distribute_update_vars(list[ParamAttr.name]): Decided which params should be updated in distribute training.
C
Chengmo 已提交
713
            Used in Distribute Transpiler to create a trainer/server program.
A
Aurelius84 已提交
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
        dtype(str): The data type of output variable, float32.
    Returns:
        Variable: LoDTensor of pyramid hash embedding.
    """
    helper = LayerHelper('search_pyramid_hash', **locals())

    w_shape = [space_len + rand_len, 1]
    w = helper.create_parameter(
        attr=param_attr, shape=w_shape, dtype=dtype, is_bias=False)
    w.stop_gradient = True

    input_vars = {'X': input, 'W': w}
    if white_list_len > 0:
        wl_shape = [white_list_len, 1]
        white_list = helper.create_parameter(
            attr=param_attr_wl, shape=wl_shape, dtype=dtype, is_bias=False)
        white_list.stop_gradient = True
        input_vars['WhiteList'] = white_list

    if black_list_len >= 0:
        bl_shape = [black_list_len, 1]
        black_list = helper.create_parameter(
            attr=param_attr_bl, shape=bl_shape, dtype=dtype, is_bias=False)
        black_list.stop_gradient = True
        input_vars['BlackList'] = black_list

C
Chengmo 已提交
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
    distribute_update_vars_str = ""
    if distribute_update_vars:
        assert isinstance(distribute_update_vars, list)
        special_name_list = []
        if param_attr:
            special_name_list.append(param_attr.name)
        if param_attr_wl:
            special_name_list.append(param_attr_wl.name)
        if param_attr_bl:
            special_name_list.append(param_attr_bl.name)
        for param in distribute_update_vars:
            if param not in special_name_list:
                raise ValueError(
                    "Pyramid Hash layer didn't have parameter {}".format(param))
        distribute_update_vars_str = ",".join(distribute_update_vars)

A
Aurelius84 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
    res = helper.create_variable_for_type_inference(dtype)
    drop_pos = helper.create_variable_for_type_inference(dtype)
    x_temp_out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='pyramid_hash',
        inputs=input_vars,
        outputs={"Out": res,
                 "X_Temp_Out": x_temp_out,
                 'DropPos': drop_pos},
        attrs={
            'num_emb': num_emb,
            'space_len': space_len,
            'pyramid_layer': pyramid_layer,
            'rand_len': rand_len,
            'drop_out_percent': drop_out_percent,
            'is_training': is_training,
            'use_filter': use_filter,
            'white_list_len': white_list_len,
            'black_list_len': black_list_len,
            'seed': seed,
            'lr': lr,
C
Chengmo 已提交
779
            'distribute_update_vars': distribute_update_vars_str
A
Aurelius84 已提交
780 781 782
        })

    return res
Z
zhoushiyu 已提交
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846


def shuffle_batch(x, seed=None):
    """
    This layer shuffle input tensor :attr:`x` . Normally, :attr:`x` is 2-D LoDTensor.

    :attr:`x` is a LoDTensor to be shuffled with shape :math:`[N_1, N_2, ..., N_k, D]` . Note that the last dim of input will not be shuffled.
    :math:`N_1 * N_2 * ... * N_k` numbers of elements with length :math:`D` will be shuffled randomly.

    For Example:

    .. code-block:: text

      Input:
        x.data = [[1, 2], [3, 4], [5, 6], [7, 8]]
        x.dims = [4, 2]

      Attrs:
        seed = 2019

      Output:
        Out.data =[[7, 8], [1, 2], [3, 4], [5, 6]]
        Out.dims = [4, 2]

    Args:
        x (Variable): The input variable. The input variable is a N-D LoDTensor with type int, float32 or float64.
        seed (None|int|Variable): The start up seed. If set, seed will be set as the start up seed of shuffle engine.
                If not set(Default), start up seed of shuffle engine will be generated randomly.

    Returns:
        Variables: The shuffled LoDTensor with the same shape and lod as input.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name="x", shape=[-1, 4])
            out = fluid.contrib.layers.shuffle_batch(x)
    """
    helper = LayerHelper('shuffle_batch', **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    shuffle_idx = helper.create_variable_for_type_inference(dtype=np.int64)
    if seed is None and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed
    if seed is None:
        seed = np.random.randint(-65536, 65535)
    op_attrs = {}
    if isinstance(seed, int):
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("shuffle_batch_seed"),
            dtype="int64",
            persistable=True)
    helper.append_op(
        type='shuffle_batch',
        inputs={'X': x,
                'Seed': seed},
        outputs={'Out': out,
                 'ShuffleIdx': shuffle_idx,
                 'SeedOut': seed},
        attrs=op_attrs)
    return out
847 848 849 850 851 852 853


def partial_concat(input, start_index=0, length=-1):
    """
    **Partial Concat**
    This OP concatenates the inputs according to the start index and length. This
    OP exists in contrib, which means that it is not shown to the public.
C
Chengmo 已提交
854
    Only 2-D Tensor or LodTensor input is supported. Slice and concat can only be
855 856 857
    performed along the second dimension.

    .. code-block:: text
C
Chengmo 已提交
858

859 860 861 862 863 864 865 866
        Given:
            x = [[0, 1, 2],
                 [3, 4, 5]]
            y = [[6, 7 ,8],
                 [9, 10, 11]]
            output = partial_concat([x, y], start_index=0, length=2)

          we get:
C
Chengmo 已提交
867

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
            output = [[0, 1, 6, 7],
                      [3, 4, 9, 10]]

    Args:
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
        start_index(int32): The start index of each instance for partial concatenation.
            Default is 0.
        length(int32): The length of each instance for partial concatenation. Default is -1.
            Negative values for all elements after start_index.
    Returns:
        Variable: A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            x = fluid.data(name="x", shape=[None,3], dtype="float32")
            y = fluid.data(name="y", shape=[None,3], dtype="float32")
C
Chengmo 已提交
885 886
            concat = fluid.contrib.layers.partial_concat(
                [x, y], start_index=0, length=2)
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
    """
    if not isinstance(input, list):
        warnings.warn(
            "The type of input in partial_concat should be list, but received %s."
            % (type(input)))
        input = [input]
    for id, x in enumerate(input):
        check_variable_and_dtype(
            x, 'input[' + str(id) + ']',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'partial_concat')
    check_type(start_index, 'start_index', (int), 'partial_concat')
    check_type(length, 'length', (int), 'partial_concat')
    inputs = {'X': input}
    attrs = {'start_index': start_index, 'length': length}
    helper = LayerHelper('partial_concat', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='partial_concat',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs)
    return out
910 911 912 913 914


def partial_sum(input, start_index=0, length=-1):
    """
    **PartialSum**
C
Chengmo 已提交
915
    This Op can sum the vars by specifying the initial position(start_index) and length(length).
916
    This Op exists in contrib, which means that it is not shown to the public.
C
Chengmo 已提交
917
    Only 2-D Tensor or LodTensor input is supported. Slice and concat can only be
918 919
    performed along the second dimension.
    .. code-block:: text
C
Chengmo 已提交
920

921 922 923 924 925 926 927
        Given:
            x = [[0, 1, 2],
                 [3, 4, 5]]
            y = [[6, 7 ,8],
                 [9, 10, 11]]
            output = partial_sum([x, y], start_index=0, length=2)
          we get:
C
Chengmo 已提交
928

929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
            output = [[6, 8],
                      [12, 14]]
    Args:
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
    Returns:
        Variable: A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
        import paddle.fluid.layers as layers
        import paddle.fluid as fluid
        import numpy as np
        x = fluid.data(name="x", shape=[None, 3], dtype="float32")
        y = fluid.data(name="y", shape=[None, 3], dtype="float32")
        sum = layers.partial_sum([x,y], start_index=0, length=2)
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        xx = np.array([1,2,3,4,5,6]).reshape((2,3)).astype("float32")
        yy = np.array([6,5,4,4,5,6]).reshape((2,3)).astype("float32")
        out = exe.run(feed={"x":xx, "y":yy}, fetch_list=[sum])
    """
    for id, x in enumerate(input):
        check_variable_and_dtype(x, 'input[' + str(id) + ']',
                                 ['float32', 'float64', 'int32', 'int64'],
                                 'partial_sum')

    inputs = {'X': input}
    attrs = {}
    attrs['start_index'] = start_index
    attrs['length'] = length
    helper = LayerHelper('partial_sum', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='partial_sum', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
    return out
C
Chengmo 已提交
964 965


966 967 968 969 970
def sparse_embedding(input,
                     size,
                     padding_idx=None,
                     is_test=False,
                     entry=None,
T
Thunderbrook 已提交
971
                     table_class="CommonSparseTable",
972 973
                     param_attr=None,
                     dtype='float32'):
Y
Yanxing Shi 已提交
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
    r"""
    :api_attr: Static Graph

    The OP is used as the operator of the Embedding Lookup layer in the large-scale 
    sparse training of the parameter server mode, instead of using the paddle.nn.functional.embedding.

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` . 
    It automatically constructs a 2D embedding matrix based on the input :attr:`size` 
    (vocab_size, emb_size) and :attr:`dtype` .

    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.

    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` , otherwise 
    the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[1, 3], [2, 4], [4, 127]]
            input.shape = [3, 2]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
        
        Case 2:

        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 1, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452]],
                        [[0.345421456, 0.524563927, ..., 0.144534654]],
                        [[0.345249859, 0.124939536, ..., 0.194353745]],
                        [[0.945345345, 0.435394634, ..., 0.435345365]],
                        [[0.0,         0.0,         ..., 0.0        ]]]  # padding data
        It will pad all-zero data when ids is 0.

    Args:
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id 
            information. The value of the input id should satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter (vocab_size, emb_size). It 
            should have two elements which indicates the size of the dictionary of embeddings 
            and the size of each embedding vector respectively. The initial parameter size 
            is 0 in the large-scale sparse scenario, which will gradually expand with the 
            training. So if vocab_size is temporarily useless, its value can be any integer.
            The emb_size is the dimensional configuration of the word embedding weight parameter.
        padding_idx(int|long|None, optional): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever 
            lookup encounters :math:`padding\_idx` in id. And the padding data will not be updated 
            while training. If set None, it makes no efe mfect to output. Default: None.
        is_test(bool, optional): Training or prediction mode. In prediction mode (is_test=False), 
            the output is not initialized and created, and it is filled with 0 and returned. Default: False.
        entry(str, optional): Entry config with parameter server whose value is ProbabilityEntry, 
            CountFilterEntry or None. Default: None.
        table_class(str, optional): The type of the sparse table. The value can be CommonSparseTable 
            or SSDSparseTable. The default is CommonSparseTable.
        param_attr(ParamAttr, optional): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. In addition, user-defined or pre-trained word 
            vectors can be loaded with the :attr:`param_attr` parameter. The local word vector needs 
            to be transformed into numpy format, and the shape of local word vector should be consistent 
            with :attr:`size` .
        dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor. It must be float32 or 
            float64. Default: float32.
            
    Returns:
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
    
    Examples:
        .. code-block:: python

            import paddle
            
            paddle.enable_static()
            sparse_feature_dim = 1024
            embedding_size = 64

            # Only when the feature appear more than 10 times or more will be participated in the training.
            entry = paddle.distributed.CountFilterEntry(10)

            input = paddle.static.data(name='ins', shape=[1], dtype='int64')
        
            emb = paddle.static.nn.sparse_embedding(
                input=input,
                size=[sparse_feature_dim, embedding_size],
                is_test=False,
                entry=entry,
                param_attr=paddle.ParamAttr(name="SparseFeatFactors",
                initializer=paddle.nn.initializer.Uniform()))

    """

1083 1084 1085 1086 1087
    helper = LayerHelper('sparse_embedding', **locals())

    check_variable_and_dtype(input, 'input', ['int64'],
                             'fluid.contrib.layers.sparse_embedding')

Y
Yanxing Shi 已提交
1088
    check_dtype(dtype, 'dtype', ['float32', 'float64'],
1089
                'paddle.static.nn.sparse_embedding')
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=size,
        type=core.VarDesc.VarType.SELECTED_ROWS,
        dtype=dtype,
        is_bias=False)

    tmp = helper.create_variable_for_type_inference(dtype)

    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)

T
Thunderbrook 已提交
1103 1104 1105 1106
    if table_class not in ["CommonSparseTable", "SSDSparseTable"]:
        raise ValueError(
            "table_class must be in [CommonSparseTable, SSDSparseTable]")

1107 1108 1109
    entry_str = "none"

    if entry is not None:
T
tangwei12 已提交
1110 1111 1112
        if entry.__class__.__name__ not in [
                "ProbabilityEntry", "CountFilterEntry"
        ]:
1113
            raise ValueError(
T
tangwei12 已提交
1114 1115 1116
                "entry must be instance in [paddle.distributed.ProbabilityEntry, paddle.distributed.CountFilterEntry]"
            )
        entry_str = entry._to_attr()
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128

    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
        attrs={
            'padding_idx': padding_idx,
            'is_sparse': True,
            'is_distributed': True,
            'remote_prefetch': True,
            'is_test': is_test,
T
Thunderbrook 已提交
1129 1130
            'entry': entry_str,
            'table_class': table_class
1131 1132 1133 1134 1135
        })

    return tmp


C
Chengmo 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
def tdm_child(x, node_nums, child_nums, param_attr=None, dtype='int32'):
    """
    **Tdm Child**
     According to the input node_id on the given tree, return the corresponding child node_id and 
      whether child is a leaf node by leaf_mask value.
    .. code-block:: text

        Given:
            tree[[0], [1, 2], [3, 4], [5, 6]] # A binary tree with seven nodes
            x = [[2], [3]]
            node_nums = 7
            child_nums = 2

          we get:
            child = [[5, 6],
                     [0, 0]]
            leaf_mask = [[1, 1],
                         [0, 0]]
    Args:
        x(Variable): Variable contained the node_id information, dtype support int32/int64.
        node_nums(int): Number of total nodes.
        child_nums(int): Maximum number of child nodes per node.
        param_attr(ParamAttr): To specify the tdm-tree-info parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in: ref: `api_fluid_ParamAttr`, should
            has shape(node_nums, 3 + child_nums), dtype support int32/int64. 
            The dimension[1] of tdm-tree-info contains the following: 
            1. Item_id(int, shape(1)), if node is a leaf node, give its item_id corresponding to node_id, else give 0.
            2. Layer_id(int, shape(1)), indicates which layer the node is on.
            3. Parent_id(int, shape(1)), node's parent node.
            4. Child_id(int, shape(child_nums)), all child node's node_id of this node should be given. 
            If the number of child nodes is insufficient, padding 0 until child nums equal to child_nums
        dtype(str): The data type of output child and leaf_mask, support int32/int64.

    Returns:
        tuple: A tuple including input node's child(Variable) and leaf_mask(Variable). 
            If child is a leaf node, leaf_mask equal ot 1, otherwise equal to 0.

    Examples:
        .. code-block:: python
        import paddle.fluid as fluid
        import numpy as np
        x = fluid.data(name="x", shape=[None, 1], dtype="int32", lod_level=1)
        tree_info = [[0,0,0,1,2],
                     [0,1,0,3,4],[0,1,0,5,6],
                     [0,2,1,0,0],[1,2,1,0,0],[2,2,2,0,0],[3,2,2,0,0]]
        tree_info_np = np.array(tree_info)
        tree_info_np = np.reshape(tree_info_np, (7,5))
        node_nums = 7
        child_nums = 2
        child, leaf_mask  = fluid.contrib.layers.tdm_child(x, node_nums, child_nums,
                                param_attr=fluid.ParamAttr(
                                    initializer=fluid.initializer.NumpyArrayInitializer(
                                                                            tree_info_np)))
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        xx = np.array([[2],[3]]).reshape((2,1)).astype("int32")
        child_res, leaf_mask_res = exe.run(feed={"x":xx}, fetch_list=[child, leaf_mask])
     """
    helper = LayerHelper("tdm_child", **locals())
    check_dtype(dtype, 'dtype', ['int32', 'int64'],
                'fluid.contrib.layers.tdm_child')
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    tree_info = helper.create_parameter(
        attr=helper.param_attr,
        shape=[node_nums, 3 + child_nums],
        dtype=dtype,
        default_initializer=Constant(0))
    tree_info.stop_gradient = True

    child = helper.create_variable_for_type_inference(dtype=dtype)
    leaf_mask = helper.create_variable_for_type_inference(dtype=dtype)

    helper.append_op(
        type='tdm_child',
        inputs={'X': x,
                'TreeInfo': tree_info},
        outputs={'Child': child,
                 'LeafMask': leaf_mask},
        attrs={'child_nums': child_nums,
               'dtype': c_dtype},
        stop_gradient=True)
    return (child, leaf_mask)
S
ShenLiang 已提交
1219 1220


C
Chengmo 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
def tdm_sampler(x,
                neg_samples_num_list,
                layer_node_num_list,
                leaf_node_num,
                tree_travel_attr=None,
                tree_layer_attr=None,
                output_positive=True,
                output_list=True,
                seed=0,
                tree_dtype='int32',
                dtype='int32'):
    """
    **Tdm Sampler**
    According to the input positive samples at leaf node(x), do negative sampling layer by layer on the given tree.
    .. code-block:: text

        Given:
            tree[[0], [1, 2], [3, 4], [5, 6]] # A binary tree with seven nodes
            travel_list = [[1, 3], [1, 4], [2, 5], [2, 6]] # leaf node's travel path (exclude root node)
            layer_list = [[1, 2], [3, 4, 5, 6]] # two layer (exclude root node)

            x = [[0], [1], [2], [3]] # Corresponding to leaf node [[3], [4], [5], [6]]
            neg_samples_num_list = [0, 0] # negative sample nums = 0
            layer_node_num_list = [2, 4]
            leaf_node_num = 4
            output_list = False

          we get:
            out = [[1, 3], [1, 4], [2, 5], [2, 6]]
            labels = [[1, 1], [1, 1], [1, 1], [1, 1]]
            mask = [[1, 1], [1, 1], [1, 1], [1, 1]]

    Args:
        x (Variable): Variable contained the item_id(corresponding to leaf node) information, dtype support int32/int64.
        neg_samples_num_list (list(int)): Number of negative samples per layer.
        layer_node_num_list (list(int)): Number of nodes per layer, must has same shape with neg_samples_num_list.
        leaf_node_num (int): Number of leaf nodes.
        tree_travel_attr (ParamAttr): To specify the tdm-travel parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr`, should 
            has shape (leaf_node_num, len(layer_node_num_list)), dtype support int32/int64.
        tree_layer_attr (ParamAttr): To specify the tdm-layer parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr`, should 
            has shape (node_num, 1), dtype support int32/int64.
        output_positive (bool): Whether to output positive samples (includ label and mask )at the same time.
        output_list (bool): Whether to divide the output into layers and organize it into list format.
        seed (int): The number of random seed.
        tree_dtype(np.dtype|core.VarDesc.VarType|str): The dtype of tdm-travel and tdm-layer, support int32/int64
        dtype(np.dtype|core.VarDesc.VarType|str): The dtype of output(sampling results, labels and masks) 

    Returns:
        tuple: A tuple including sampling results, corresponding labels and masks. if output_positive = True, sampling
            result  will include both positive and negative samples. If sampling reseult is a positive sample, the label is 1, 
            and if it is a negative sample, it is 0. If the tree is unbalanced, in order to ensure the consistency of the 
            sampling result shape, the padding sample's mask = 0, the real sample's mask value = 1. 
            If output_list = True, the result will organize into list format specified by layer information.
            Output variable have same type with tdm-travel and tdm-layer parameter(tree_dtype).

    Examples:
        .. code-block:: python
        import paddle.fluid as fluid
        import numpy as np
        x = fluid.data(name="x", shape=[None, 1], dtype="int32", lod_level=1)
        travel_list = [[1, 3], [1, 4], [2, 5], [2, 6]] # leaf node's travel path, shape(leaf_node_num, layer_num)
        layer_list_flat = [[1], [2], [3], [4], [5], [6]] # shape(node_nums, 1)

        neg_samples_num_list = [0, 0] # negative sample nums = 0
        layer_node_num_list = [2, 4] #two layer (exclude root node)
        leaf_node_num = 4

        travel_array = np.array(travel_list)
        layer_array = np.array(layer_list_flat)

        sample, label, mask = fluid.contrib.layers.tdm_sampler(
            x,
            neg_samples_num_list,
            layer_node_num_list,
            leaf_node_num,
            tree_travel_attr=fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    travel_array)),
            tree_layer_attr=fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    layer_array)),
            output_positive=True,
            output_list=True,
            seed=0,
            tree_dtype='int32')

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        xx = np.array([[0],[1]]).reshape((2,1)).astype("int32")

        exe.run(feed={"x":xx})

    """
    helper = LayerHelper("tdm_sampler", **locals())
    check_dtype(tree_dtype, 'tree_dtype', ['int32', 'int64'],
                'fluid.contrib.layers.tdm_sampler')
    check_dtype(dtype, 'dtype', ['int32', 'int64'],
                'fluid.contrib.layers.tdm_sampler')
    c_dtype = convert_np_dtype_to_dtype_(dtype)

    if len(neg_samples_num_list) != len(layer_node_num_list):
        raise ValueError(
            "The shape of negative samples list must match the shape of layers. "
            "But received len of neg_samples_num_list: {},"
            "and len of layer_node_num_list: {}, please check your input.".
            format(len(neg_samples_num_list), len(layer_node_num_list)))
    assert leaf_node_num is not None, "leaf_node_num should not be None here."

    layer_nums = 0
    node_nums = 0
    tree_layer_offset_lod = [0]
    for layer_idx, layer_node_num in enumerate(layer_node_num_list):
        layer_nums += 1
        node_nums += layer_node_num
        tree_layer_offset_lod.append(node_nums)
        if neg_samples_num_list[layer_idx] >= layer_node_num_list[layer_idx]:
            raise ValueError(
                "The number of negative samples must be less than the number of nodes "
                "in the layer {}, But received negative nums {}, and num of node at layer {} "
                "is {}, please check your input.".format(
                    layer_idx, neg_samples_num_list[
                        layer_idx], layer_idx, layer_node_num_list[layer_idx]))
    assert leaf_node_num < node_nums, "leaf_node_num must be less than total node nums."

    travel_shape = [leaf_node_num, layer_nums]
    travel = helper.create_parameter(
        attr=tree_travel_attr,
        shape=travel_shape,
        dtype=tree_dtype,
        default_initializer=Constant(0))

    layer_shape = [node_nums, 1]
    layer = helper.create_parameter(
        attr=tree_layer_attr,
        shape=layer_shape,
        dtype=tree_dtype,
        default_initializer=Constant(0))

    out = helper.create_variable_for_type_inference(dtype=dtype)
    out.stop_gradient = True

    labels = helper.create_variable_for_type_inference(dtype=dtype)
    labels.stop_gradient = True

    mask = helper.create_variable_for_type_inference(dtype=dtype)
    mask.stop_gradient = True

    helper.append_op(
        type='tdm_sampler',
        inputs={"X": x,
                "Travel": travel,
                "Layer": layer},
        outputs={'Out': out,
                 'Labels': labels,
                 'Mask': mask},
        attrs={
            'neg_samples_num_list': neg_samples_num_list,
            'output_positive': output_positive,
            'layer_offset_lod': tree_layer_offset_lod,
            'seed': seed,
            'dtype': c_dtype
        })

    if output_list:
        output_list = []
        labels_list = []
        mask_list = []
        start_offset = 0
        positive_flag = 1
        if not output_positive:
            positive_flag = 0

        for layer_sample_num in neg_samples_num_list:
            end_offset = start_offset + \
                layer_sample_num + positive_flag
            layer_samples = slice(
                out, axes=[1], starts=[start_offset], ends=[end_offset])
            layer_labels = slice(
                labels, axes=[1], starts=[start_offset], ends=[end_offset])
            layer_mask = slice(
                mask, axes=[1], starts=[start_offset], ends=[end_offset])

            layer_samples = reshape(layer_samples,
                                    [-1, layer_sample_num + positive_flag, 1])
            layer_samples.stop_gradient = True

            layer_labels = reshape(layer_labels,
                                   [-1, layer_sample_num + positive_flag, 1])
            layer_labels.stop_gradient = True

            layer_mask = reshape(layer_mask,
                                 [-1, layer_sample_num + positive_flag, 1])
            layer_mask.stop_gradient = True

            output_list.append(layer_samples)
            labels_list.append(layer_labels)
            mask_list.append(layer_mask)
            start_offset = end_offset

        out = output_list
        labels = labels_list
        mask = mask_list

    return (out, labels, mask)


S
ShenLiang 已提交
1430 1431 1432 1433
def rank_attention(input,
                   rank_offset,
                   rank_param_shape,
                   rank_param_attr,
1434 1435
                   max_rank=3,
                   max_size=0):
S
ShenLiang 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
    """
    **Rank Attention layer**
    This Op can calculate rank attention between input and rank_param, and 
    rank_param gives the organization of data. Notice: It currently supports
    GPU device.
    This Op exists in contrib, which means that it is not shown to the public.
    Args:
        input: Tensor with data type float32, float64.
        rank_offset: Tensor with data type int32.
        rank_para_shape: The shape of rank_param.
        rank_param_attr: Attribute initializer of rank_param.
        max_rank: The max rank of input's ranks.
    Returns:
        Variable: A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
           import paddle.fluid as fluid
           import numpy as np
C
Chengmo 已提交
1454

S
ShenLiang 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
           input = fluid.data(name="input", shape=[None, 2], dtype="float32")
           rank_offset = fluid.data(name="rank_offset", shape=[None, 7], dtype="int32")
           out = fluid.contrib.layers.rank_attention(input=input,
                                                     rank_offset=rank_offset,
                                                     rank_param_shape=[18,3],
                                                     rank_param_attr=
                                                       fluid.ParamAttr(learning_rate=1.0,
                                                                     name="ubm_rank_param.w_0",
                                                                     initializer=
                                                                     fluid.initializer.Xavier(uniform=False)),
1465 1466
                                                      max_rank=3,
                                                      max_size=0)
S
ShenLiang 已提交
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
    """
    helper = LayerHelper('rank_attention', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    input_shape = input.shape
    assert input_shape[1] * max_rank * max_rank == rank_param_shape[0]

    rank_param = helper.create_parameter(
        attr=rank_param_attr, shape=rank_param_shape, dtype=dtype)
    rank_param.stop_gradient = False

    output = helper.create_variable_for_type_inference(dtype)
1478 1479
    input_help = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
S
ShenLiang 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
    ins_rank = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)

    helper.append_op(
        type="rank_attention",
        inputs={
            "X": input,
            "RankOffset": rank_offset,
            "RankParam": rank_param
        },
1490 1491 1492 1493 1494
        outputs={"Out": output,
                 "InputHelp": input_help,
                 "InsRank": ins_rank},
        attrs={"MaxRank": max_rank,
               "MaxSize": max_size})
S
ShenLiang 已提交
1495
    return output
S
ShenLiang 已提交
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558


def batch_fc(input, param_size, param_attr, bias_size, bias_attr, act=None):
    """
    **Batch FC layer**
    This Op can calculate BatchFC. This is similar to matmul op, 
    except that the bias and relu activation layers are added. 
    Notice: It currently supports GPU device.
    This Op exists in contrib, which means that it is not shown to the public.
    Args:
        input: Tensor with data type float32, float64.
        param_size: The size of w.
        param_attr: Attribute initializer of w.
        bias_size: The size of bias.
        bias_attr: Attribute initializer of bias.
        act: Activation to be applied to the output of this layer.

    Returns:
        Variable: A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
           import paddle.fluid as fluid
           
           input = fluid.data(name="input", shape=[16, 2, 3], dtype="float32")
           out = fluid.contrib.layers.batch_fc(input=input,
                                               param_size=[16, 3, 10],
                                               param_attr=
                                                 fluid.ParamAttr(learning_rate=1.0,
                                                               name="w_0",
                                                               initializer=
                                                               fluid.initializer.Xavier(uniform=False)),
                                               bias_size=[16, 10],
                                               bias_attr=
                                                 fluid.ParamAttr(learning_rate=1.0,
                                                               name="b_0",
                                                               initializer=
                                                               fluid.initializer.Xavier(uniform=False)),
                                                   act="relu")
    """

    helper = LayerHelper("batch_fc", **locals())
    check_type(input, 'input', (Variable), 'batch_fc')
    input_shape = input.shape
    assert input_shape[0] == param_size[0]
    assert input_shape[2] == param_size[1]
    assert param_size[2] == bias_size[1]
    assert input_shape[0] == bias_size[0]

    dtype = helper.input_dtype()
    check_dtype(dtype, 'input', ['float32', 'float64'], 'batch_fc')

    w = helper.create_parameter(
        attr=param_attr, shape=param_size, dtype=dtype, is_bias=False)
    b = helper.create_parameter(
        attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=False)
    pre_act = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="batch_fc",
        inputs={"Input": input,
                "W": w,
                "Bias": b},
        outputs={"Out": pre_act})
    return helper.append_activation(pre_act)
S
ShenLiang 已提交
1559 1560 1561


def _pull_box_extended_sparse(input, size, extend_size=64, dtype='float32'):
1562
    r"""
S
ShenLiang 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
    **Pull Box Extended Sparse Layer**
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        extend_size(int): The embedding size parameter in extended dim, 
            which indicates the size of each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
      float32 now.
    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb, emb_ex = fluid.contrib.layers._pull_box_extended_sparse(input=data, size=8, extend_size=128)
    """
    helper = LayerHelper('pull_box_extended_sparse', **locals())
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
    outs_extend = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
    helper.append_op(
        type='pull_box_extended_sparse',
        inputs={'Ids': inputs},
        outputs={'Out': outs,
                 'OutExtend': outs_extend},
        attrs={'emb_size': size,
               'emb_extended_size': extend_size})
    if len(outs) == 1:
        return outs[0], outs_extend[0]
    return outs, outs_extend
L
LielinJiang 已提交
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644


def bilateral_slice(x, guide, grid, has_offset, name=None):
    """
    :alias_main: paddle.nn.functional.bilateral_slice
	:alias: paddle.nn.functional.bilateral_slice,paddle.nn.functional.vision.bilateral_slice
	:old_api: paddle.fluid.layers.bilateral_slice

    This operation implements bilateral slicing on the input according to the guide map.
    For more information of bilateral slicing, please refer to Deep Bilateral Learning for Real-Time Image Enhancement <https://groups.csail.mit.edu/graphics/hdrnet/data/hdrnet.pdf>_

    Args:
        x(Variable): The input tensor, which is a 4-D tensor with shape
                     [N, C, H, W], N is the batch size, C is the channel
                     number, H and W is the feature height and width.
                     The data type is float32 and float64.
        guide(Variable): Input grid tensor of shape [N, H, W]. The
                        data type is float32 and float64.
        grid(Variable): Input grid tensor of shape [N, C, D, H, W]. The
                        data type is float32 and float64.
        has_offset(bool): Whether to slice with affine offset.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
        Variable: Output of shape [N, C, H, W]. The data type is same as input tensor.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.data(name='x', shape=[None, 3, 101, 60], dtype='float32')
            guide = fluid.data(name='guide', shape=[None, 101, 60], dtype='float32')
            grid = fluid.data(name='grid', shape=[None, 12, 8, 10, 6], dtype='float32')

            # without offset
1645
            output = fluid.contrib.bilateral_slice(x, guide, grid, has_offset=False)
L
LielinJiang 已提交
1646 1647
            
            # has offset
1648
            output = fluid.contrib.bilateral_slice(x, guide, grid, has_offset=True)
L
LielinJiang 已提交
1649 1650

    """
1651 1652
    if paddle.fluid.in_dygraph_mode():
        attrs = ('has_offset', has_offset)
W
wanghuancoder 已提交
1653
        return getattr(_C_ops, "bilateral_slice")(x, grid, guide, *attrs)
L
LielinJiang 已提交
1654 1655 1656 1657 1658 1659

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'bilateral_slice')
    check_variable_and_dtype(guide, 'guide', ['float32', 'float64'],
                             'bilateral_slice')
    check_variable_and_dtype(grid, 'grid', ['float32', 'float64'],
                             'bilateral_slice')
1660
    helper = LayerHelper("bilateral_slice", **locals())
L
LielinJiang 已提交
1661 1662 1663 1664 1665 1666 1667 1668
    out = helper.create_variable_for_type_inference(x.dtype)
    inputs = {'X': x, 'Guide': guide, 'Grid': grid}
    helper.append_op(
        type='bilateral_slice',
        inputs=inputs,
        attrs={'has_offset': has_offset},
        outputs={'Out': out})
    return out
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728


def correlation(x,
                y,
                pad_size,
                kernel_size,
                max_displacement,
                stride1,
                stride2,
                corr_type_multiply=1):
    """

    This operation compute correlation of two tensor.
    For more information of correlation, please refer to PWC-Net: 
    CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume 
    <https://arxiv.org/pdf/1709.02371.pdf>_

    Args:
        x(Tensor): The input x is 4-D Tensor with shape [N, C, H, W]. The data type is float32 and float64.
        y(Tensor): The input y is 4-D Tensor with shape [N, C, H, W]. The data type is float32 and float64.
        pad_size(int): Pad size. The data type is int.
        max_displacement(int): Max displacement. The data type is int.
        stride1(int): stride size of x. The data type is int.
        stride2(int): stride size of y. The data type is int.
        corr_type_multiply(int, optional): The type of multiply. The data type is int. Default: 1.

    Returns:
        Tensor: The data type is same as input tensor.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            x1 = fluid.layers.data(name='x1',
                               shape=x_shape,
                               dtype=x_type,
                               append_batch_size=False)
            x2 = fluid.layers.data(name='x2',
                                shape=x_shape,
                                dtype=x_type,
                                append_batch_size=False)


            out = fluid.contrib.correlation(
                            x1,
                            x2,
                            pad_size=4,
                            kernel_size=1,
                            max_displacement=4,
                            stride1=1,
                            stride2=1)

    """

    if paddle.fluid.in_dygraph_mode():
        attrs = ("pad_size", pad_size, "kernel_size", kernel_size,
                 "max_displacement", max_displacement, "stride1", stride1,
                 "stride2", stride2, "corr_type_multiply", corr_type_multiply)
W
wanghuancoder 已提交
1729
        output = getattr(_C_ops, "correlation")(x, y, *attrs)
1730
    else:
1731 1732
        helper = LayerHelper("correlation", **locals())
        output = helper.create_variable_for_type_inference(dtype=x.dtype)
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
        helper.append_op(
            type="correlation",
            inputs={"Input1": x,
                    "Input2": y},
            attrs={
                "pad_size": pad_size,
                "kernel_size": kernel_size,
                "max_displacement": max_displacement,
                "stride1": stride1,
                "stride2": stride2,
                "corr_type_multiply": corr_type_multiply
            },
            outputs={"Output": output})
    return output
Z
Zhang Ting 已提交
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758


def fused_bn_add_act(x,
                     y,
                     momentum=0.9,
                     epsilon=1e-05,
                     param_attr=None,
                     bias_attr=None,
                     moving_mean_name=None,
                     moving_variance_name=None,
                     act=None,
                     name=None):
1759
    r"""
Z
Zhang Ting 已提交
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
    This Op performs batch norm on input x, and adds the result to input y. Then
    it performs activation on the sum. The data format of inputs must be NHWC
    `[batch, in_height, in_width, in_channels]`.

    Args:
        x(Tensor): The rank of input tensor can be 2, 3, 4, 5. The data type
            is float16.
        y(Tensor): The rank of input tensor can be 2, 3, 4, 5. The data type
            is float16.
        momentum(float|Tensor, optional): The value used for the moving_mean and
            moving_var computation. This should be a float number or a tensor with
            shape [1] and data type as float32. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
	        will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	        If the Initializer of the param_attr is not set, the parameter is initialized
	        with Xavier. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
	        will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
	        If the Initializer of the bias_attr is not set, the bias is initialized zero.
	        Default: None.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. If it
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm
            will save global mean with the string.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance.
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm
            will save global variance with the string.
        act(string, optional): Activation type, linear|relu|prelu|...
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.

    Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            def build_program(main_program, startup_program):
                with fluid.program_guard(main_program, startup_program):
                    x = fluid.layers.data(name='x', shape=[1, 28, 28], dtype='float32')
                    y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                    conv1_1 = fluid.layers.conv2d(
                        input=x,
                        filter_size=3,
                        num_filters=32,
                        stride=1,
                        padding=1,
                        act=None,
                        bias_attr=False,
                        data_format='NHWC')
                    conv1_2 = fluid.layers.conv2d(
                        input=x,
                        filter_size=3,
                        num_filters=32,
                        stride=1,
                        padding=1,
                        act=None,
                        bias_attr=False,
                        data_format='NHWC')
                    bn = fluid.layers.batch_norm(
                        input=conv1_1,
                        act=None,
                        data_layout='NHWC')
                    fused_bn_add_act = fluid.contrib.layers.fused_bn_add_act(conv1_2, bn)
                    prediction = fluid.layers.fc(input=fused_bn_add_act, size=10, act='softmax')
                    loss = fluid.layers.cross_entropy(input=prediction, label=y)
                    loss = fluid.layers.mean(loss)
                    sgd = fluid.optimizer.SGD(learning_rate=0.001)
                    sgd = fluid.contrib.mixed_precision.decorate(
                        sgd, use_dynamic_loss_scaling=True, init_loss_scaling=128.0)
                    sgd.minimize(loss)

                return x, y, loss

            iters = 5
            batch_size = 16
            support_gpu = fluid.is_compiled_with_cuda()
            if support_gpu:
                main_program = fluid.Program()
                startup_program = fluid.Program()
                place = fluid.CUDAPlace(0)
                x, y, loss = build_program(main_program, startup_program)
  
                feeder = fluid.DataFeeder(feed_list=[x, y], place=place)
                train_reader = paddle.batch(
                    paddle.dataset.mnist.train(), batch_size=batch_size)
                exe = fluid.Executor(place)
                scope = fluid.Scope()
                with fluid.scope_guard(scope):
                    exe.run(startup_program)
                    for _ in range(iters):
                        data = next(train_reader())
                        loss_v = exe.run(main_program, feed=feeder.feed(data), fetch_list=[loss])
    """
    helper = LayerHelper('fused_bn_add_act', **locals())

    check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                             'fused_bn_add_act')
    check_variable_and_dtype(y, 'input', ['float16', 'float32', 'float64'],
                             'fused_bn_add_act')
    bn_param_dtype = core.VarDesc.VarType.FP32

    x_shape = x.shape
    channel_num = x_shape[-1]
    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=bn_param_dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
        attr=helper.bias_attr,
        shape=param_shape,
        dtype=bn_param_dtype,
        is_bias=True)
    mean = helper.create_parameter(
        attr=ParamAttr(
            name=moving_mean_name, initializer=Constant(0.0), trainable=False),
        shape=param_shape,
        dtype=bn_param_dtype)
    mean.stop_gradient = True
    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
            trainable=False),
        shape=param_shape,
        dtype=bn_param_dtype)
    variance.stop_gradient = True

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
    saved_mean = helper.create_variable_for_type_inference(
        dtype=bn_param_dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=bn_param_dtype, stop_gradient=True)
    reserve_space = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.FP16, stop_gradient=True)
    batch_norm_out = helper.create_variable_for_type_inference(
        core.VarDesc.VarType.FP16)

    inputs = {
        "X": x,
        "Z": y,
        "Scale": scale,
        "Bias": bias,
    }
    attrs = {"epsilon": epsilon, 'momentum': momentum}

    outputs = {
        "Y": batch_norm_out,
        "MeanOut": mean_out,
        "VarianceOut": variance_out,
        "SavedMean": saved_mean,
        "SavedVariance": saved_variance,
        "ReserveSpace": reserve_space
    }

    helper.append_op(
        type="fused_bn_add_activation",
        inputs=inputs,
        outputs=outputs,
        attrs=attrs)

    return batch_norm_out
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970


def pow2_decay_with_linear_warmup(warmup_steps,
                                  total_steps,
                                  start_lr,
                                  base_lr,
                                  end_lr,
                                  dtype='float32',
                                  name=None):
    if paddle.fluid.in_dygraph_mode():
        raise NotImplementedError(
            "pow2_warmup does not support dygraph mode yet.")

    helper = LayerHelper("pow2_decay_with_linear_warmup", **locals())
    lr = helper.create_global_variable(persistable=True, dtype=dtype, shape=[1])
    helper.set_variable_initializer(lr, Constant(value=start_lr))

    step = helper.create_global_variable(
        persistable=True, dtype='int64', shape=[1])
    helper.set_variable_initializer(step, Constant(value=0))
    assert warmup_steps <= total_steps, "warmup_steps cannot be larger than total_steps"

    helper.append_op(
        type="pow2_decay_with_linear_warmup",
        inputs={"LearningRate": lr,
                "Step": step},
        outputs={"LearningRateOut": lr,
                 "StepOut": step},
        attrs={
            "warmup_steps": warmup_steps,
            "total_steps": total_steps,
            "start_lr": start_lr,
            "base_lr": base_lr,
            "end_lr": end_lr,
        })
    return lr