test_kthvalue_op.py 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid


def cal_kthvalue(x, k, axis, keepdim=False):
    if axis < 0:
        axis = len(x.shape) + axis
    indices = np.argsort(x, axis=axis)
    value = np.sort(x, axis=axis)
    indices = indices.take(indices=k - 1, axis=axis)
    value = value.take(indices=k - 1, axis=axis)
    if keepdim:
        indices = np.expand_dims(indices, axis)
        value = np.expand_dims(value, axis)
    return value, indices


class TestKthvalueOp(OpTest):
36

37 38 39 40 41 42
    def init_args(self):
        self.k = 5
        self.axis = -1

    def setUp(self):
        self.op_type = "kthvalue"
43
        self.python_api = paddle.kthvalue
44 45 46 47 48
        self.dtype = np.float64
        self.input_data = np.random.random((2, 1, 2, 4, 10))
        self.init_args()
        self.inputs = {'X': self.input_data}
        self.attrs = {'k': self.k, 'axis': self.axis}
49 50 51
        output, indices = cal_kthvalue(self.input_data,
                                       k=self.k,
                                       axis=self.axis)
52 53 54 55
        self.outputs = {'Out': output, 'Indices': indices}

    def test_check_output(self):
        paddle.enable_static()
56
        self.check_output(check_eager=True)
57 58 59

    def test_check_grad(self):
        paddle.enable_static()
60
        self.check_grad(set(['X']), 'Out', check_eager=True)
61 62 63


class TestKthvalueOpWithKeepdim(OpTest):
64

65 66 67 68 69 70 71
    def init_args(self):
        self.k = 2
        self.axis = 1

    def setUp(self):
        self.init_args()
        self.op_type = "kthvalue"
72
        self.python_api = paddle.kthvalue
73 74 75 76
        self.dtype = np.float64
        self.input_data = np.random.random((1, 3, 2, 4, 10))
        self.inputs = {'X': self.input_data}
        self.attrs = {'k': self.k, 'axis': self.axis, 'keepdim': True}
77 78 79 80
        output, indices = cal_kthvalue(self.input_data,
                                       k=self.k,
                                       axis=self.axis,
                                       keepdim=True)
81 82 83 84
        self.outputs = {'Out': output, 'Indices': indices}

    def test_check_output(self):
        paddle.enable_static()
85
        self.check_output(check_eager=True)
86 87 88

    def test_check_grad(self):
        paddle.enable_static()
89
        self.check_grad(set(['X']), 'Out', check_eager=True)
90 91 92


class TestKthvalueOpKernels(unittest.TestCase):
93

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    def setUp(self):
        self.axises = [2, -1]

    def test_kthvalue_op(self):
        paddle.disable_static()

        def test_cpu_kernel():
            shape = (2, 128, 10)
            k = 2
            paddle.set_device('cpu')
            inputs = np.random.random(shape)
            tensor = paddle.to_tensor(inputs)
            for axis in self.axises:
                value_expect, indice_expect = cal_kthvalue(inputs, k, axis)
                v, inds = paddle.kthvalue(tensor, k, axis)
109 110 111 112
                np.testing.assert_allclose(v.numpy(), value_expect, rtol=1e-05)
                np.testing.assert_allclose(inds.numpy(),
                                           indice_expect,
                                           rtol=1e-05)
113 114 115 116 117 118 119 120 121 122

        def test_gpu_kernel():
            shape = (2, 30, 250)
            k = 244
            paddle.set_device('gpu')
            inputs = np.random.random(shape)
            tensor = paddle.to_tensor(inputs)
            for axis in self.axises:
                value_expect, indice_expect = cal_kthvalue(inputs, k, axis)
                v, inds = paddle.kthvalue(tensor, k, axis)
123 124 125 126
                np.testing.assert_allclose(v.numpy(), value_expect, rtol=1e-05)
                np.testing.assert_allclose(inds.numpy(),
                                           indice_expect,
                                           rtol=1e-05)
127 128 129 130 131 132 133

        test_cpu_kernel()
        if fluid.core.is_compiled_with_cuda():
            test_gpu_kernel()


class TestKthvalueOpWithNaN(unittest.TestCase):
134

135 136 137 138 139
    def setUp(self):
        paddle.disable_static()
        self.x = paddle.uniform([2, 200, 10], dtype='float32')

    def test_errors(self):
140

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
        def test_nan_in_cpu_kernel():
            paddle.set_device('cpu')
            nan_position = 100
            self.x[0, nan_position, 2] = float('nan')
            v, inds = self.x.kthvalue(k=200, axis=1)
            self.assertTrue(np.isnan(v[0, 2].numpy()[0]))
            self.assertEqual(inds[0, 2].numpy()[0], nan_position)

        def test_nan_in_gpu_kernel():
            paddle.set_device('gpu')
            nan_position = 100
            self.x[0, nan_position, 2] = float('nan')
            v, inds = self.x.kthvalue(k=200, axis=1)
            self.assertTrue(np.isnan(v[0, 2].numpy()[0]))
            self.assertEqual(inds[0, 2].numpy()[0], nan_position)

        test_nan_in_cpu_kernel()
        if fluid.core.is_compiled_with_cuda():
            test_nan_in_gpu_kernel()


class TestKthvalueOpErrors(unittest.TestCase):
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    def setUp(self):
        self.x = paddle.uniform([2, 10, 20, 25], dtype='float32')

    def test_errors(self):
        paddle.disable_static()

        def test_k_lowrange_error():
            self.x.kthvalue(k=0, axis=2)

        self.assertRaises(ValueError, test_k_lowrange_error)

        def test_k_uprange_error():
            self.x.kthvalue(k=500, axis=2)

        self.assertRaises(ValueError, test_k_uprange_error)

        def test_dim_range_error():
            self.x.kthvalue(k=10, axis=5)

        self.assertRaises(ValueError, test_dim_range_error)


class TestModeOpInStatic(unittest.TestCase):
187

188 189 190 191 192 193 194 195 196
    def setUp(self):
        np.random.seed(666)
        self.input_data = np.random.random((2, 20, 1, 2, 80)).astype(np.float64)
        self.k = 10

    def test_run_static(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
197 198 199
            input_tensor = paddle.static.data(name="x",
                                              shape=[2, 20, 1, 2, 80],
                                              dtype="float64")
200 201 202 203 204
            result = paddle.kthvalue(input_tensor, self.k, axis=1)
            expect_value = cal_kthvalue(self.input_data, self.k, axis=1)[0]
            exe = paddle.static.Executor(paddle.CPUPlace())
            paddle_result = exe.run(feed={"x": self.input_data},
                                    fetch_list=[result])[0]
205
            np.testing.assert_allclose(paddle_result, expect_value, rtol=1e-05)
206 207 208 209


if __name__ == '__main__':
    unittest.main()