test_auto_parallel_partitioner.py 47.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import unittest.mock
from io import StringIO
import numpy as np

import paddle
import paddle.nn as nn
import paddle.static as static
import paddle.nn.functional as F
import paddle.utils as utils
import paddle.tensor as tensor
from paddle.fluid import layers
from paddle.nn.layer.transformer import _convert_param_attr_to_list
28
from paddle.distributed.fleet import auto
29
from paddle.distributed.auto_parallel.completion import Completer
30
from paddle.distributed.auto_parallel.utils import check_distributed_attr_for_program
31
from paddle.distributed.auto_parallel.utils import print_program_with_dist_attr
32
from paddle.distributed.auto_parallel.utils import append_distributed_attr_suffix
33
from paddle.distributed.auto_parallel.dist_context import DistributedContext
34 35 36
from paddle.distributed import fleet
from paddle.distributed.auto_parallel.partitioner import Partitioner
from paddle.distributed.auto_parallel.utils import _get_comm_group
37
from paddle.distributed.auto_parallel.process_group import new_process_group
38 39

paddle.enable_static()
40
_global_parallel_strategy = None
41 42 43 44 45 46 47 48
_global_process_mesh = None


def get_programs(annotated_func):
    train_program = static.Program()
    start_program = static.Program()
    dist_context = DistributedContext()
    global _global_process_mesh
49
    dist_context.process_mesh = _global_process_mesh
50
    train_program, start_program = annotated_func(train_program, start_program)
51 52 53
    completer = Completer(dist_context)
    complete_train_program = completer.complete_forward_annotation(
        train_program)
54
    dist_context.block_state.parse_forward_blocks(complete_train_program)
55 56 57

    rank_id = 3
    dist_strategy = fleet.DistributedStrategy()
58 59 60
    partitioner = Partitioner(dist_context, rank_id)
    test_auto_parallel_dist_main_prog, test_auto_parallel_dist_startup_prog, _ = partitioner.partition(
        complete_train_program, start_program, [])
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

    return complete_train_program, start_program, test_auto_parallel_dist_main_prog, test_auto_parallel_dist_startup_prog, dist_context


def is_all_parameters_shape_equal(prog1, prog2):

    params1 = prog1.all_parameters()
    params2 = prog2.all_parameters()
    params1.sort(key=lambda x: x.name)
    params2.sort(key=lambda x: x.name)
    shape1 = [tensor.shape for tensor in params1]
    shape2 = [tensor.shape for tensor in params2]

    if len(shape1) != len(shape2):
        return False
    for i in range(len(shape1)):
        if shape1[i] != shape2[i]:
            return False
    return True


def check_tensor_split(prog1, varnames1, prog2, varnames2, axis, nsplit):

    for i in range(len(varnames1)):
        var1 = prog1.global_block().var(varnames1[i])
        var2 = prog2.global_block().var(varnames2[i])
        if var1.shape[axis] != (var2.shape[axis] // nsplit):
            return False

    return True


def initialization_check(mode, dist_context, dist_startup_prog,
94 95
                         serial_startup_prog, var_need_broadcast, process_mesh,
                         mp_parallel_axis, dp_parallel_axis):
96
    if 'mp' in mode:
97 98 99
        group_ranks = _get_comm_group(process_mesh.processes,
                                      process_mesh.topology, mp_parallel_axis,
                                      3)
100 101
        mp_ring_id = new_process_group(group_ranks).id
        broadcast_ops = [
102 103
            op for op in dist_startup_prog.global_block().ops if
            (op.type == "c_broadcast" and op.desc.attr("ring_id") == mp_ring_id)
104 105 106 107 108 109 110
        ]
        broadcast_varnames = sorted(
            [op.desc.output_arg_names()[0] for op in broadcast_ops])
        if broadcast_varnames != var_need_broadcast:
            return False

    if 'dp' in mode:
111 112 113
        group_ranks = _get_comm_group(process_mesh.processes,
                                      process_mesh.topology, dp_parallel_axis,
                                      3)
114 115 116
        dp_ring_id = new_process_group(group_ranks).id
        nparam = len(serial_startup_prog.all_parameters())
        nbroadcast_dp = len([
117 118
            op for op in dist_startup_prog.global_block().ops if
            (op.type == "c_broadcast" and op.desc.attr("ring_id") == dp_ring_id)
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
        ])
        if nparam != nbroadcast_dp:
            return False

    if "dp" in mode and 'mp' in mode:
        nbroadcast = len([
            op for op in dist_startup_prog.global_block().ops
            if op.type == "c_broadcast"
        ])
        if len(var_need_broadcast) + nbroadcast_dp != nbroadcast:
            return False

    return True


134 135 136
def get_input_var_dist_attr(op, main_program, dist_context):
    varname = op.desc.input_arg_names()
    var = main_program.global_block().var(varname[0])
137
    dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
138 139 140 141 142 143
    return dist_attr


def get_output_var_dist_attr(op, main_program, dist_context):
    varname = op.desc.output_arg_names()
    var = main_program.global_block().var(varname[0])
144
    dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
145 146 147 148 149
    return dist_attr


def check_equal_var_dist_attr(serial_dist_attr, dist_attr):
    equal = True
150 151
    if serial_dist_attr.process_mesh != dist_attr.process_mesh or \
        serial_dist_attr.dims_mapping != dist_attr.dims_mapping:
152 153 154 155 156 157 158 159
        equal = False
    return equal


def check_equal_dist_op_attr(dist_context, dist_main_prog, serial_op, dist_ops,
                             dist_op_idx):
    equal = True
    # get serial op's process_mesh and impl_idx
160 161 162
    serial_op_dist_attr = dist_context.get_op_dist_attr_for_program(serial_op)
    serial_process_mesh = serial_op_dist_attr.process_mesh
    serial_impl_idx = serial_op_dist_attr.impl_idx
163 164 165

    # check dist_attr between serial op and dist op
    for i in dist_op_idx:
166
        op_dist_attr = dist_context.get_op_dist_attr_for_program(dist_ops[i])
167 168
        for in_varname in dist_ops[i].desc.input_arg_names():
            in_var = dist_main_prog.global_block().var(in_varname)
169
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
170
                in_var)
171
            tensor_dims_mapping = tensor_dist_attr.dims_mapping
172 173 174 175 176 177
            in_var_dims_mapping = op_dist_attr.get_input_dims_mapping(
                in_varname)
            if tensor_dims_mapping != in_var_dims_mapping:
                equal = False
        for out_varname in dist_ops[i].desc.output_arg_names():
            out_var = dist_main_prog.global_block().var(out_varname)
178
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
179
                out_var)
180
            tensor_dims_mapping = tensor_dist_attr.dims_mapping
181 182 183 184
            out_var_dims_mapping = op_dist_attr.get_output_dims_mapping(
                out_varname)
            if tensor_dims_mapping != out_var_dims_mapping:
                equal = False
185 186
        dist_op_process_mesh = op_dist_attr.process_mesh
        dist_op_impl_idx = op_dist_attr.impl_idx
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
        if serial_op.desc.id() == dist_ops[i].desc.id() or \
            serial_process_mesh != dist_op_process_mesh or \
            serial_impl_idx != dist_op_impl_idx:
            equal = False

    return equal


def distributed_attr_check_for_dist_op(serial_main_prog, dist_main_prog,
                                       dist_context, serial_op_idx,
                                       dist_op_idx):

    equal = True
    serial_ops = serial_main_prog.global_block().ops
    dist_ops = dist_main_prog.global_block().ops

    for i in range(len(serial_op_idx)):
        serial_op = serial_ops[serial_op_idx[i]]
        dist_op_0 = dist_ops[dist_op_idx[i][0]]
        if dist_op_0.type == "c_identity":
            # serial op input's dist_attr
            serial_in_dist_attr = get_input_var_dist_attr(
                serial_op, serial_main_prog, dist_context)
            # c_identity output's(new var) dist_attr
            identity_out_dist_attr = get_output_var_dist_attr(
                dist_op_0, dist_main_prog, dist_context)
            # check var dist_attr
            equal = check_equal_var_dist_attr(serial_in_dist_attr,
                                              identity_out_dist_attr)
        else:
            # serial op output's dist_attr
            serial_out_dist_attr = get_output_var_dist_attr(
                serial_op, serial_main_prog, dist_context)
            # dist op output's(new var) dist_attr
            out_dist_attr = get_output_var_dist_attr(dist_op_0, dist_main_prog,
                                                     dist_context)
            # check var dist_attr
            equal = check_equal_var_dist_attr(serial_out_dist_attr,
                                              out_dist_attr)

227
        # check op's dist_attr
228 229 230 231 232 233 234 235 236 237
        equal = check_equal_dist_op_attr(dist_context, dist_main_prog,
                                         serial_op, dist_ops, dist_op_idx[i])

    return equal


def distributed_attr_check_for_program(dist_main_prog, dist_context):
    have_dist_attr = True
    for block in dist_main_prog.blocks:
        for tensor in block.vars.values():
238
            var_dist_attr = dist_context.get_tensor_dist_attr_for_program(
239 240 241 242 243
                tensor)
            if var_dist_attr is None:
                have_dist_attr = False

        for op in block.ops:
244
            op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
245 246 247 248 249 250
            if op_dist_attr is None:
                have_dist_attr = False

    return have_dist_attr


251
class MLPLayer(nn.Layer):
252

253 254 255 256 257 258 259 260
    def __init__(self,
                 hidden_size=1024,
                 intermediate_size=4 * 1024,
                 dropout_ratio=0.1,
                 initializer_range=0.02):
        super(MLPLayer, self).__init__()
        d_model = hidden_size
        dim_feedforward = intermediate_size
261 262
        weight_attr = paddle.ParamAttr(
            initializer=nn.initializer.Normal(mean=0.0, std=initializer_range))
263 264
        bias_attr = None

265 266 267 268 269 270 271 272
        self.linear0 = nn.Linear(d_model,
                                 dim_feedforward,
                                 weight_attr,
                                 bias_attr=bias_attr)
        self.linear1 = nn.Linear(dim_feedforward,
                                 d_model,
                                 weight_attr,
                                 bias_attr=bias_attr)
273 274 275 276
        self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
        self.dropout = nn.Dropout(dropout_ratio, mode="upscale_in_train")

    def forward(self, input):
277
        if _global_parallel_strategy in ["mp", "dp_mp"]:
278
            auto.shard_tensor(self.linear0.weight,
279 280
                              process_mesh=_global_process_mesh,
                              shard_spec=[None, "mp"])
281
            auto.shard_tensor(self.linear1.weight,
282 283
                              process_mesh=_global_process_mesh,
                              shard_spec=["mp", None])
284
        else:
285
            auto.shard_tensor(self.linear0.weight,
286 287
                              process_mesh=_global_process_mesh,
                              shard_spec=[None, None])
288
            auto.shard_tensor(self.linear1.weight,
289 290
                              process_mesh=_global_process_mesh,
                              shard_spec=[None, None])
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

        out = self.norm(input)
        out = self.linear0(out)
        out = F.gelu(out, approximate=True)
        out = self.linear1(out)
        out = self.dropout(out)

        return out


def mlp_pretrain_forward(train_program, start_program):
    with static.program_guard(train_program,
                              start_program), utils.unique_name.guard():
        batch_size = 4
        hidden_size = 1024
        sequence_len = 512
307 308 309
        input = static.data(name="input",
                            shape=[batch_size, sequence_len, hidden_size],
                            dtype='float32')
310

311
        if _global_parallel_strategy in ["dp", "dp_mp"]:
312
            auto.shard_tensor(input,
313 314
                              process_mesh=_global_process_mesh,
                              shard_spec=["dp", None, None])
315 316 317 318 319

        mlp = MLPLayer(hidden_size=hidden_size,
                       intermediate_size=4 * hidden_size,
                       dropout_ratio=0.1,
                       initializer_range=0.02)
320 321 322 323 324
        out = mlp(input)
    return train_program, start_program


class TestMLPAutoPartitioner(unittest.TestCase):
325

326
    def test_mlp_dp(self):
327 328
        global _global_parallel_strategy
        _global_parallel_strategy = "dp"
329
        global _global_process_mesh
330 331
        _global_process_mesh = auto.ProcessMesh(mesh=[0, 1, 2, 3],
                                                dim_names=["dp"])
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            mlp_pretrain_forward)

        # parameter should not be partitioned
        self.assertTrue(
            is_all_parameters_shape_equal(serial_main_prog, dist_main_prog))
        self.assertTrue(
            is_all_parameters_shape_equal(serial_startup_prog,
                                          dist_startup_prog))

        # op in main prog should be the same
        serial_ops = serial_main_prog.global_block().ops
        dist_ops = dist_main_prog.global_block().ops
        serial_ops = [op.type for op in serial_ops]
        dist_ops = [op.type for op in dist_ops]
        self.assertTrue(serial_ops == dist_ops)

350
        # parameter initialization
351 352
        var_need_broadcast = []
        self.assertTrue(
353 354 355 356 357 358 359 360
            initialization_check(_global_parallel_strategy,
                                 dist_context,
                                 dist_startup_prog,
                                 serial_startup_prog,
                                 var_need_broadcast,
                                 _global_process_mesh,
                                 mp_parallel_axis=None,
                                 dp_parallel_axis=0))
361 362

    def test_mlp_mp(self):
363 364
        global _global_parallel_strategy
        _global_parallel_strategy = "mp"
365
        global _global_process_mesh
366 367
        _global_process_mesh = auto.ProcessMesh(mesh=[0, 1, 2, 3],
                                                dim_names=["mp"])
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            mlp_pretrain_forward)

        # param should be partition
        nrank = 4
        # col parallel
        weights = ['linear_0.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 1, nrank))
        weights = ['linear_0.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        # row parallel
        weights = ['linear_1.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        weights = ['linear_1.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, 1))

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
396 397
            'layer_norm', 'c_identity', 'matmul_v2', 'elementwise_add', 'gelu',
            'matmul_v2', 'c_allreduce_sum', 'elementwise_add', 'dropout'
398 399 400
        ]
        self.assertTrue(dist_ops == ref_ops)

401
        # parameter initialization
402 403 404
        var_need_broadcast = sorted(
            ['layer_norm_0.b_0', 'layer_norm_0.w_0', 'linear_1.b_0'])
        self.assertTrue(
405 406 407 408 409 410 411 412
            initialization_check(_global_parallel_strategy,
                                 dist_context,
                                 dist_startup_prog,
                                 serial_startup_prog,
                                 var_need_broadcast,
                                 _global_process_mesh,
                                 mp_parallel_axis=0,
                                 dp_parallel_axis=None))
413

414 415 416 417 418 419 420 421 422 423 424
        # check var and op all have dist_attr in dist_main_program
        self.assertTrue(
            distributed_attr_check_for_program(dist_main_prog, dist_context))
        # check distribured attr for dist op
        serial_op_idx = [1, 4]
        dist_op_idx = [[1, 2], [5, 6]]
        self.assertTrue(
            distributed_attr_check_for_dist_op(serial_main_prog, dist_main_prog,
                                               dist_context, serial_op_idx,
                                               dist_op_idx))

425
    def test_mlp_dp_mp(self):
426 427
        global _global_parallel_strategy
        _global_parallel_strategy = "dp_mp"
428
        global _global_process_mesh
429 430 431
        _global_process_mesh = auto.ProcessMesh(mesh=[[0, 1, 2, 3],
                                                      [4, 5, 6, 7]],
                                                dim_names=["dp", "mp"])
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            mlp_pretrain_forward)

        # param should be partition
        nrank = 4
        # col parallel
        weights = ['linear_0.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 1, nrank))
        weights = ['linear_0.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        # row parallel
        weights = ['linear_1.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        weights = ['linear_1.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, 1))

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
460 461
            'layer_norm', 'c_identity', 'matmul_v2', 'elementwise_add', 'gelu',
            'matmul_v2', 'c_allreduce_sum', 'elementwise_add', 'dropout'
462 463 464 465 466 467 468
        ]
        self.assertTrue(dist_ops == ref_ops)

        # parameter initialization
        var_need_broadcast = sorted(
            ['layer_norm_0.b_0', 'layer_norm_0.w_0', 'linear_1.b_0'])
        self.assertTrue(
469 470 471 472 473 474 475 476
            initialization_check(_global_parallel_strategy,
                                 dist_context,
                                 dist_startup_prog,
                                 serial_startup_prog,
                                 var_need_broadcast,
                                 _global_process_mesh,
                                 mp_parallel_axis=1,
                                 dp_parallel_axis=0))
477

478 479 480 481 482 483 484 485 486 487 488
        # check var and op all have dist_attr in dist_main_program
        self.assertTrue(
            distributed_attr_check_for_program(dist_main_prog, dist_context))
        # check distribured attr for dist op
        serial_op_idx = [1, 4]
        dist_op_idx = [[1, 2], [5, 6]]
        self.assertTrue(
            distributed_attr_check_for_dist_op(serial_main_prog, dist_main_prog,
                                               dist_context, serial_op_idx,
                                               dist_op_idx))

489 490

class AttentionLayer(nn.Layer):
491

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
    def __init__(self,
                 hidden_size=1024,
                 sequence_len=512,
                 intermediate_size=4 * 1024,
                 num_heads=16,
                 dropout_ratio=0.1,
                 initializer_range=0.02):
        super(AttentionLayer, self).__init__()
        self.hidden_size = hidden_size
        self.sequence_len = sequence_len
        self.embed_dim = self.hidden_size
        self.kdim = self.embed_dim
        self.vdim = self.embed_dim
        self.num_heads = num_heads
        self.head_dim = self.embed_dim // self.num_heads
        assert self.head_dim * self.num_heads == self.embed_dim, \
            "embed_dim must be divisible by num_heads"
        self.dropout_ratio = dropout_ratio
        self.initializer_range = initializer_range
        self.training = True
        self.attn_mask = None
513 514
        weight_attr = paddle.ParamAttr(
            initializer=nn.initializer.Normal(mean=0.0, std=initializer_range))
515 516
        bias_attr = None

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
        self.q_proj = nn.Linear(self.embed_dim,
                                self.embed_dim,
                                weight_attr,
                                bias_attr=bias_attr)
        self.k_proj = nn.Linear(self.kdim,
                                self.embed_dim,
                                weight_attr,
                                bias_attr=bias_attr)
        self.v_proj = nn.Linear(self.vdim,
                                self.embed_dim,
                                weight_attr,
                                bias_attr=bias_attr)
        self.out_proj = nn.Linear(self.embed_dim,
                                  self.embed_dim,
                                  weight_attr,
                                  bias_attr=bias_attr)
533 534

    def forward(self, input):
535
        if _global_parallel_strategy in ["dp", "dp_mp"]:
536
            auto.shard_tensor(input,
537 538
                              process_mesh=_global_process_mesh,
                              shard_spec=["dp", None, None])
539 540 541 542 543 544 545 546

        q = self.q_proj(input)
        q = tensor.reshape(x=q, shape=[0, 0, self.num_heads, self.head_dim])
        q = tensor.transpose(x=q, perm=[0, 2, 1, 3])

        k = self.k_proj(input)
        v = self.v_proj(input)

547
        if _global_parallel_strategy in ["mp", "dp_mp"]:
548
            auto.shard_tensor(self.q_proj.weight,
549 550
                              process_mesh=_global_process_mesh,
                              shard_spec=[None, "mp"])
551
            auto.shard_tensor(self.k_proj.weight,
552 553
                              process_mesh=_global_process_mesh,
                              shard_spec=[None, "mp"])
554
            auto.shard_tensor(self.v_proj.weight,
555 556
                              process_mesh=_global_process_mesh,
                              shard_spec=[None, "mp"])
557 558 559 560 561 562 563

        k = tensor.reshape(x=k, shape=[0, 0, self.num_heads, self.head_dim])
        k = tensor.transpose(x=k, perm=[0, 2, 1, 3])
        v = tensor.reshape(x=v, shape=[0, 0, self.num_heads, self.head_dim])
        v = tensor.transpose(x=v, perm=[0, 2, 1, 3])

        # scale dot product attention
564 565 566 567
        product = layers.matmul(x=q,
                                y=k,
                                transpose_y=True,
                                alpha=self.head_dim**-0.5)
568 569 570 571 572 573 574

        if self.attn_mask is not None:
            product = product + self.attn_mask

        weights = F.softmax(product)

        if self.dropout_ratio:
575 576 577 578
            weights = F.dropout(weights,
                                self.dropout_ratio,
                                training=self.training,
                                mode="upscale_in_train")
579 580 581 582 583 584 585 586 587

        out = tensor.matmul(weights, v)

        # combine heads
        out = tensor.transpose(out, perm=[0, 2, 1, 3])
        out = tensor.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])

        # project to output
        out = self.out_proj(out)
588 589

        if _global_parallel_strategy in ["mp", "dp_mp"]:
590
            auto.shard_tensor(self.out_proj.weight,
591 592
                              process_mesh=_global_process_mesh,
                              shard_spec=["mp", None])
593 594 595 596 597 598 599 600 601 602

        return out


def attn_pretrain_forward(train_program, start_program):
    with static.program_guard(train_program,
                              start_program), utils.unique_name.guard():
        batch_size = 4
        hidden_size = 1024
        sequence_len = 512
603 604 605 606 607 608 609 610 611
        input = static.data(name="query",
                            shape=[batch_size, sequence_len, hidden_size],
                            dtype='float32')
        attn = AttentionLayer(hidden_size=hidden_size,
                              sequence_len=sequence_len,
                              intermediate_size=4 * hidden_size,
                              num_heads=16,
                              dropout_ratio=0.1,
                              initializer_range=0.02)
612 613 614 615 616 617
        out = attn(input)

    return train_program, start_program


class TestAttentionAutoPartitioner(unittest.TestCase):
618

619
    def test_attn_dp(self):
620 621
        global _global_parallel_strategy
        _global_parallel_strategy = "dp"
622
        global _global_process_mesh
623 624
        _global_process_mesh = auto.ProcessMesh(mesh=[0, 1, 2, 3],
                                                dim_names=["dp"])
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641

        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            attn_pretrain_forward)
        # parameter should not be partitioned
        self.assertTrue(
            is_all_parameters_shape_equal(serial_main_prog, dist_main_prog))
        self.assertTrue(
            is_all_parameters_shape_equal(serial_startup_prog,
                                          dist_startup_prog))

        # op in main prog should be the same
        serial_ops = serial_main_prog.global_block().ops
        dist_ops = dist_main_prog.global_block().ops
        serial_ops = [op.type for op in serial_ops]
        dist_ops = [op.type for op in dist_ops]
        self.assertTrue(serial_ops == dist_ops)

642
        # parameter initialization
643 644
        var_need_broadcast = []
        self.assertTrue(
645 646 647 648 649 650 651 652
            initialization_check(_global_parallel_strategy,
                                 dist_context,
                                 dist_startup_prog,
                                 serial_startup_prog,
                                 var_need_broadcast,
                                 _global_process_mesh,
                                 mp_parallel_axis=None,
                                 dp_parallel_axis=0))
653 654

    def test_attn_mp(self):
655 656
        global _global_parallel_strategy
        _global_parallel_strategy = "mp"
657
        global _global_process_mesh
658 659
        _global_process_mesh = auto.ProcessMesh(mesh=[0, 1, 2, 3],
                                                dim_names=["mp"])
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688

        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            attn_pretrain_forward)

        # param should be partition
        nrank = 4
        # col parallel
        weights = ['linear_0.w_0', 'linear_1.w_0', 'linear_2.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 1, nrank))
        weights = ['linear_0.b_0', 'linear_1.b_0', 'linear_2.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        # row parallel
        weights = ['linear_3.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        weights = ['linear_3.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, 1))

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
689 690 691 692 693 694
            'c_identity', 'matmul_v2', 'elementwise_add', 'reshape2',
            'transpose2', 'c_identity', 'matmul_v2', 'elementwise_add',
            'c_identity', 'matmul_v2', 'elementwise_add', 'reshape2',
            'transpose2', 'reshape2', 'transpose2', 'matmul', 'softmax',
            'dropout', 'matmul_v2', 'transpose2', 'reshape2', 'matmul_v2',
            'c_allreduce_sum', 'elementwise_add'
695 696 697
        ]
        self.assertTrue(dist_ops == ref_ops)

698
        # parameter initialization
699 700
        var_need_broadcast = ['linear_3.b_0']
        self.assertTrue(
701 702 703 704 705 706 707 708
            initialization_check(_global_parallel_strategy,
                                 dist_context,
                                 dist_startup_prog,
                                 serial_startup_prog,
                                 var_need_broadcast,
                                 _global_process_mesh,
                                 mp_parallel_axis=0,
                                 dp_parallel_axis=None))
709

710 711 712 713 714 715 716 717 718 719 720
        # check var and op all have dist_attr in dist_main_program
        self.assertTrue(
            distributed_attr_check_for_program(dist_main_prog, dist_context))
        # check distribured attr for dist op
        serial_op_idx = [0, 4, 6, 18]
        dist_op_idx = [[0, 1], [5, 6], [8, 9], [21, 22]]
        self.assertTrue(
            distributed_attr_check_for_dist_op(serial_main_prog, dist_main_prog,
                                               dist_context, serial_op_idx,
                                               dist_op_idx))

721
    def test_attn_dp_mp(self):
722 723
        global _global_parallel_strategy
        _global_parallel_strategy = "dp_mp"
724
        global _global_process_mesh
725 726 727
        _global_process_mesh = auto.ProcessMesh(mesh=[[0, 1, 2, 3],
                                                      [4, 5, 6, 7]],
                                                dim_names=["dp", "mp"])
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756

        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            attn_pretrain_forward)

        # param should be partition
        nrank = 4
        # col parallel
        weights = ['linear_0.w_0', 'linear_1.w_0', 'linear_2.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 1, nrank))
        weights = ['linear_0.b_0', 'linear_1.b_0', 'linear_2.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        # row parallel
        weights = ['linear_3.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        weights = ['linear_3.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, 1))

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
757 758 759 760 761 762
            'c_identity', 'matmul_v2', 'elementwise_add', 'reshape2',
            'transpose2', 'c_identity', 'matmul_v2', 'elementwise_add',
            'c_identity', 'matmul_v2', 'elementwise_add', 'reshape2',
            'transpose2', 'reshape2', 'transpose2', 'matmul', 'softmax',
            'dropout', 'matmul_v2', 'transpose2', 'reshape2', 'matmul_v2',
            'c_allreduce_sum', 'elementwise_add'
763 764 765
        ]
        self.assertTrue(dist_ops == ref_ops)

766
        # parameter initialization
767 768
        var_need_broadcast = ['linear_3.b_0']
        self.assertTrue(
769 770 771 772 773 774 775 776
            initialization_check(_global_parallel_strategy,
                                 dist_context,
                                 dist_startup_prog,
                                 serial_startup_prog,
                                 var_need_broadcast,
                                 _global_process_mesh,
                                 mp_parallel_axis=1,
                                 dp_parallel_axis=0))
777

778 779 780 781 782 783 784 785 786 787 788
        # check var and op all have dist_attr in dist_main_program
        self.assertTrue(
            distributed_attr_check_for_program(dist_main_prog, dist_context))
        # check distribured attr for dist op
        serial_op_idx = [0, 4, 6, 18]
        dist_op_idx = [[0, 1], [5, 6], [8, 9], [21, 22]]
        self.assertTrue(
            distributed_attr_check_for_dist_op(serial_main_prog, dist_main_prog,
                                               dist_context, serial_op_idx,
                                               dist_op_idx))

789 790

class DecoderLayer(nn.Layer):
791

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
    def __init__(self,
                 vocab_size=32768,
                 hidden_size=1024,
                 sequence_len=512,
                 max_position_embeddings=512,
                 intermediate_size=4 * 1024,
                 num_heads=16,
                 dropout_ratio=0.1,
                 initializer_range=0.02):
        super(DecoderLayer, self).__init__()
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.max_position_embeddings = max_position_embeddings
        self.sequence_len = sequence_len
        self.embed_dim = self.hidden_size
        self.kdim = self.embed_dim
        self.vdim = self.embed_dim
        self.num_heads = num_heads
        self.dropout_ratio = dropout_ratio
        self.initializer_range = initializer_range
        self.training = True
        self.attn_mask = None

        self.head_dim = self.embed_dim // self.num_heads
        assert self.head_dim * self.num_heads == self.embed_dim, \
            "embed_dim must be divisible by num_heads"
        self.word_embeddings = nn.Embedding(
            self.vocab_size,
            self.hidden_size,
821 822 823 824
            weight_attr=paddle.ParamAttr(name="word_embeddings",
                                         initializer=nn.initializer.Normal(
                                             mean=0.0,
                                             std=self.initializer_range)))
825 826 827
        self.position_embeddings = nn.Embedding(
            self.max_position_embeddings,
            self.hidden_size,
828 829 830 831
            weight_attr=paddle.ParamAttr(name="pos_embeddings",
                                         initializer=nn.initializer.Normal(
                                             mean=0.0,
                                             std=self.initializer_range)))
832 833 834 835

        weight_attr = paddle.ParamAttr(initializer=nn.initializer.Normal(
            mean=0.0, std=self.initializer_range))
        bias_attr = None
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
        self.q_proj = nn.Linear(self.embed_dim,
                                self.embed_dim,
                                weight_attr,
                                bias_attr=bias_attr)
        self.k_proj = nn.Linear(self.kdim,
                                self.embed_dim,
                                weight_attr,
                                bias_attr=bias_attr)
        self.v_proj = nn.Linear(self.vdim,
                                self.embed_dim,
                                weight_attr,
                                bias_attr=bias_attr)
        self.out_proj = nn.Linear(self.embed_dim,
                                  self.embed_dim,
                                  weight_attr,
                                  bias_attr=bias_attr)
852 853 854 855 856 857 858

        intermediate_size = 4 * self.hidden_size
        d_model = self.hidden_size
        dim_feedforward = intermediate_size
        weight_attr = paddle.ParamAttr(initializer=nn.initializer.Normal(
            mean=0.0, std=self.initializer_range))
        bias_attr = None
859 860 861 862 863 864 865 866
        self.linear0 = nn.Linear(d_model,
                                 dim_feedforward,
                                 weight_attr,
                                 bias_attr=bias_attr)
        self.linear1 = nn.Linear(dim_feedforward,
                                 d_model,
                                 weight_attr,
                                 bias_attr=bias_attr)
867 868 869 870 871 872
        self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
        self.dropout1 = nn.Dropout(self.dropout_ratio)
        self.dropout2 = nn.Dropout(self.dropout_ratio, mode="upscale_in_train")
        self.dropout3 = nn.Dropout(self.dropout_ratio, mode="upscale_in_train")

    def forward(self, input_ids, position_ids):
873
        if _global_parallel_strategy in ["dp", "dp_mp"]:
874
            auto.shard_tensor(input_ids,
875 876
                              process_mesh=_global_process_mesh,
                              shard_spec=["dp", None])
877 878 879 880

        input_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)

881
        if _global_parallel_strategy in ["mp", "dp_mp"]:
882
            auto.shard_tensor(self.word_embeddings.weight,
883 884
                              process_mesh=_global_process_mesh,
                              shard_spec=["mp", None])
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899

        embeddings = input_embeddings + position_embeddings
        embeddings = self.dropout1(embeddings)

        # Pre-norm
        target = self.norm(embeddings)

        # The following is the attention part
        q = self.q_proj(target)
        q = tensor.reshape(x=q, shape=[0, 0, self.num_heads, self.head_dim])
        q = tensor.transpose(x=q, perm=[0, 2, 1, 3])

        k = self.k_proj(target)
        v = self.v_proj(target)

900
        if _global_parallel_strategy in ["mp", "dp_mp"]:
901
            auto.shard_tensor(self.q_proj.weight,
902 903
                              process_mesh=_global_process_mesh,
                              shard_spec=[None, "mp"])
904
            auto.shard_tensor(self.k_proj.weight,
905 906
                              process_mesh=_global_process_mesh,
                              shard_spec=[None, "mp"])
907
            auto.shard_tensor(self.v_proj.weight,
908 909
                              process_mesh=_global_process_mesh,
                              shard_spec=[None, "mp"])
910 911 912 913 914 915 916

        k = tensor.reshape(x=k, shape=[0, 0, self.num_heads, self.head_dim])
        k = tensor.transpose(x=k, perm=[0, 2, 1, 3])
        v = tensor.reshape(x=v, shape=[0, 0, self.num_heads, self.head_dim])
        v = tensor.transpose(x=v, perm=[0, 2, 1, 3])

        # scale dot product attention
917 918 919 920
        product = layers.matmul(x=q,
                                y=k,
                                transpose_y=True,
                                alpha=self.head_dim**-0.5)
921 922 923 924 925 926 927

        if self.attn_mask is not None:
            product = product + self.attn_mask

        weights = F.softmax(product)

        if self.dropout_ratio:
928 929 930 931
            weights = F.dropout(weights,
                                self.dropout_ratio,
                                training=self.training,
                                mode="upscale_in_train")
932 933 934 935 936 937 938 939 940 941

        out = tensor.matmul(weights, v)

        # combine heads
        out = tensor.transpose(out, perm=[0, 2, 1, 3])
        out = tensor.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])

        # project to output
        out = self.out_proj(out)

942
        if _global_parallel_strategy in ["mp", "dp_mp"]:
943
            auto.shard_tensor(self.out_proj.weight,
944 945
                              process_mesh=_global_process_mesh,
                              shard_spec=["mp", None])
946
        else:
947
            auto.shard_tensor(self.out_proj.weight,
948 949
                              process_mesh=_global_process_mesh,
                              shard_spec=[None, None])
950 951 952 953 954 955 956 957 958 959 960 961

        # Add residual
        residual = embeddings + self.dropout2(out)

        # Pre-norm
        out0 = self.norm(residual)

        # The following is the MLP part
        out1 = self.linear0(out0)
        out2 = F.gelu(out1, approximate=True)
        out3 = self.linear1(out2)

962
        if _global_parallel_strategy in ["mp", "dp_mp"]:
963
            auto.shard_tensor(self.linear0.weight,
964 965
                              process_mesh=_global_process_mesh,
                              shard_spec=[None, "mp"])
966
            auto.shard_tensor(self.linear1.weight,
967 968
                              process_mesh=_global_process_mesh,
                              shard_spec=["mp", None])
969 970 971 972 973 974 975 976 977 978 979 980

        # Add residual
        final = residual + self.dropout3(out3)
        return final


def decoder_pretrain_forward(train_program, start_program):
    with static.program_guard(train_program,
                              start_program), utils.unique_name.guard():
        batch_size = 4
        hidden_size = 1024
        sequence_len = 512
981 982 983 984 985 986 987 988 989 990 991 992 993 994
        input_ids = static.data(name="input_ids",
                                shape=[batch_size, sequence_len],
                                dtype='int64')
        position_ids = static.data(name="position_ids",
                                   shape=[batch_size, sequence_len],
                                   dtype='int64')
        decoder = DecoderLayer(vocab_size=32768,
                               hidden_size=hidden_size,
                               sequence_len=sequence_len,
                               max_position_embeddings=512,
                               intermediate_size=4 * hidden_size,
                               num_heads=16,
                               dropout_ratio=0.1,
                               initializer_range=0.02)
995 996 997 998 999 1000
        out = decoder(input_ids, position_ids)

    return train_program, start_program


class TestDecoderLayerPartitioner(unittest.TestCase):
1001

1002
    def test_decoder_dp_mp(self):
1003 1004
        global _global_parallel_strategy
        _global_parallel_strategy = "dp_mp"
1005
        global _global_process_mesh
1006 1007 1008
        _global_process_mesh = auto.ProcessMesh(mesh=[[0, 1, 2, 3],
                                                      [4, 5, 6, 7]],
                                                dim_names=["dp", "mp"])
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            decoder_pretrain_forward)

        # param should be partition
        nrank = 4
        # col parallel
        weights = [
            'linear_0.w_0', 'linear_1.w_0', 'linear_2.w_0', 'linear_4.w_0'
        ]
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 1, nrank))
        weights = [
            'linear_0.b_0', 'linear_1.b_0', 'linear_2.b_0', 'linear_4.b_0'
        ]
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        # row parallel
        weights = ['word_embeddings', 'linear_3.w_0', 'linear_5.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        weights = [
            'linear_3.b_0', 'pos_embeddings', 'layer_norm_0.b_0',
            'layer_norm_0.w_0', 'linear_5.b_0'
        ]
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, 1))

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
            'c_embedding', 'c_allreduce_sum', 'lookup_table_v2',
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
            'elementwise_add', 'dropout', 'layer_norm', 'c_identity',
            'matmul_v2', 'elementwise_add', 'reshape2', 'transpose2',
            'c_identity', 'matmul_v2', 'elementwise_add', 'c_identity',
            'matmul_v2', 'elementwise_add', 'reshape2', 'transpose2',
            'reshape2', 'transpose2', 'matmul', 'softmax', 'dropout',
            'matmul_v2', 'transpose2', 'reshape2', 'matmul_v2',
            'c_allreduce_sum', 'elementwise_add', 'dropout', 'elementwise_add',
            'layer_norm', 'c_identity', 'matmul_v2', 'elementwise_add', 'gelu',
            'matmul_v2', 'c_allreduce_sum', 'elementwise_add', 'dropout',
            'elementwise_add'
1055 1056 1057
        ]
        self.assertTrue(dist_ops == ref_ops)

1058
        # parameter initialization
1059 1060 1061 1062 1063
        var_need_broadcast = sorted([
            'linear_3.b_0', 'pos_embeddings', 'layer_norm_0.b_0',
            'layer_norm_0.w_0', 'linear_5.b_0'
        ])
        self.assertTrue(
1064 1065 1066 1067 1068 1069 1070 1071
            initialization_check(_global_parallel_strategy,
                                 dist_context,
                                 dist_startup_prog,
                                 serial_startup_prog,
                                 var_need_broadcast,
                                 _global_process_mesh,
                                 mp_parallel_axis=1,
                                 dp_parallel_axis=0))
1072

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
        # check var and op all have dist_attr in dist_main_program
        self.assertTrue(
            distributed_attr_check_for_program(dist_main_prog, dist_context))
        # check distribured attr
        serial_op_idx = [0, 5, 9, 11, 23, 28, 31]
        dist_op_idx = [[0, 1], [6, 7], [11, 12], [14, 15], [27, 28], [33, 34],
                       [37, 38]]
        self.assertTrue(
            distributed_attr_check_for_dist_op(serial_main_prog, dist_main_prog,
                                               dist_context, serial_op_idx,
                                               dist_op_idx))

1085
    def test_decoder_noparallel(self):
1086 1087
        global _global_parallel_strategy
        _global_parallel_strategy = "None"
1088
        global _global_process_mesh
1089 1090 1091
        _global_process_mesh = auto.ProcessMesh(mesh=[[0, 1, 2, 3],
                                                      [4, 5, 6, 7]],
                                                dim_names=["x", "y"])
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            decoder_pretrain_forward)

        # param should be partition
        nrank = 1
        # col parallel
        weights = [
            'linear_0.w_0', 'linear_1.w_0', 'linear_2.w_0', 'linear_4.w_0'
        ]
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 1, nrank))
        weights = [
            'linear_0.b_0', 'linear_1.b_0', 'linear_2.b_0', 'linear_4.b_0'
        ]
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        # row parallel
        weights = ['word_embeddings', 'linear_3.w_0', 'linear_5.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        weights = [
            'linear_3.b_0', 'pos_embeddings', 'layer_norm_0.b_0',
            'layer_norm_0.w_0', 'linear_5.b_0'
        ]
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, 1))

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
            'lookup_table_v2', 'lookup_table_v2', 'elementwise_add', 'dropout',
1128 1129 1130 1131 1132 1133 1134
            'layer_norm', 'matmul_v2', 'elementwise_add', 'reshape2',
            'transpose2', 'matmul_v2', 'elementwise_add', 'matmul_v2',
            'elementwise_add', 'reshape2', 'transpose2', 'reshape2',
            'transpose2', 'matmul', 'softmax', 'dropout', 'matmul_v2',
            'transpose2', 'reshape2', 'matmul_v2', 'elementwise_add', 'dropout',
            'elementwise_add', 'layer_norm', 'matmul_v2', 'elementwise_add',
            'gelu', 'matmul_v2', 'elementwise_add', 'dropout', 'elementwise_add'
1135 1136 1137 1138 1139 1140 1141 1142 1143
        ]
        self.assertTrue(dist_ops == ref_ops)
        dist_ops = dist_startup_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
            'gaussian_random', 'gaussian_random', 'gaussian_random',
            'fill_constant', 'gaussian_random', 'fill_constant',
            'gaussian_random', 'fill_constant', 'gaussian_random',
            'fill_constant', 'gaussian_random', 'fill_constant',
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
            'gaussian_random', 'fill_constant', 'fill_constant',
            'fill_constant', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast'
1154 1155 1156 1157 1158 1159
        ]
        self.assertTrue(dist_ops == ref_ops)


if __name__ == "__main__":
    unittest.main()