unpool_op.cc 13.8 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
S
sweetsky0901 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/unpool_op.h"
16
#include <memory>
17 18
#include <string>
#include <vector>
S
sweetsky0901 已提交
19 20 21 22 23
namespace paddle {
namespace operators {

class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
24
  void Make() override {
S
sweetsky0901 已提交
25 26
    AddInput(
        "X",
S
sweetsky0901 已提交
27 28 29
        "(Tensor) The input tensor of unpool operator. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
S
sweetsky0901 已提交
30 31
    AddInput(
        "Indices",
S
sweetsky0901 已提交
32 33 34
        "(Tensor) The input tensor of the indices given out by MaxPool2d. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of feature.");
S
sweetsky0901 已提交
35
    AddOutput("Out",
S
sweetsky0901 已提交
36 37 38 39 40
              "(Tensor) The output tensor of unpool operator."
              "The format of output tensor is also NCHW."
              "Where N is batch size, C is "
              "the number of channels, H and W is the height and "
              "width of feature.");
S
sweetsky0901 已提交
41 42
    AddAttr<std::vector<int>>(
        "ksize",
S
sweetsky0901 已提交
43
        "(vector), the unpooling window size(height, width) "
S
sweetsky0901 已提交
44
        "of unpooling operator.");
S
sweetsky0901 已提交
45 46 47
    AddAttr<std::vector<int>>("strides",
                              "(vector, default:{1, 1}), "
                              "strides (height, width) of unpooling operator.")
S
sweetsky0901 已提交
48
        .SetDefault({1, 1});
S
sweetsky0901 已提交
49
    AddAttr<std::vector<int>>("paddings",
翟飞跃 已提交
50
                              "(vector default:{0,0}), "
S
sweetsky0901 已提交
51
                              "paddings (height, width) of unpooling operator.")
S
sweetsky0901 已提交
52
        .SetDefault({0, 0});
S
sweetsky0901 已提交
53 54
    AddAttr<std::string>(
        "unpooling_type",
S
sweetsky0901 已提交
55 56
        "(string), unpooling type, can be \"max\" for max-unpooling ")
        .InEnum({"max"});
57 58 59 60 61 62 63 64 65 66
    AddAttr<std::vector<int>>("output_size",
                              "(vector, optional). The shape of output.")
        .SetDefault({0, 0});
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("NCHW");
S
sweetsky0901 已提交
67
    AddComment(R"DOC(
Y
ying 已提交
68 69
Input shape is: $(N, C_{in}, H_{in}, W_{in})$, Output shape is:
$(N, C_{out}, H_{out}, W_{out})$, where
Y
ying 已提交
70
$$
P
peizhilin 已提交
71 72
H_{out} = (H_{in}-1) * strides[0] - 2 * paddings[0] + ksize[0] \\
W_{out} = (W_{in}-1) * strides[1] - 2 * paddings[1] + ksize[1]
Y
ying 已提交
73 74 75
$$
Paper: http://www.matthewzeiler.com/wp-content/uploads/2017/07/iccv2011.pdf
)DOC");
S
sweetsky0901 已提交
76 77 78
  }
};

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
class Unpool3dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput(
        "X",
        "(Tensor) The input tensor of unpool operator. "
        "The format of input tensor is NCDHW. Where N is batch size, C is the "
        "number of channels, D, H and W is the depth, height and width of "
        "feature.");
    AddInput(
        "Indices",
        "(Tensor) The input tensor of the indices given out by MaxPool3d. "
        "The format of input tensor is NCDHW. Where N is batch size, C is the "
        "number of channels, D, H and W is the depth, height and width of "
        "feature.");
    AddOutput("Out",
              "(Tensor) The output tensor of unpool operator."
              "The format of output tensor is also NCDHW."
              "Where N is batch size, C is "
              "the number of channels, D, H and W is the depth, height and "
              "width of feature.");
    AddAttr<std::vector<int>>(
        "ksize",
        "(vector), the unpooling window size(depth, height, width) "
        "of unpooling operator.");
    AddAttr<std::vector<int>>(
        "strides",
        "(vector, default:{1, 1, 1}), "
        "strides (depth, height, width) of unpooling operator.")
        .SetDefault({1, 1, 1});
    AddAttr<std::vector<int>>(
        "paddings",
        "(vector default:{0, 0,0}), "
        "paddings (depth, height, width) of unpooling operator.")
        .SetDefault({0, 0, 0});
    AddAttr<std::string>(
        "unpooling_type",
        "(string), unpooling type, can be \"max\" for max-unpooling ")
        .InEnum({"max"});
    AddAttr<std::vector<int>>("output_size",
                              "(vector, optional). The shape of output.")
        .SetDefault({0, 0, 0});
    AddAttr<std::string>(
        "data_format",
        "(string, default NCDHW)"
        "Defaults to \"NCDHW\". Specify the data format of the output data, ")
        .SetDefault("NCDHW");
    AddComment(R"DOC(
Input shape is: $(N, C_{in}, D_{in}, H_{in}, W_{in})$, Output shape is:
$(N, C_{out}, D_{out}, H_{out}, W_{out})$, where
$$
D_{out} = (D_{in}-1) * strides[0] - 2 * paddings[0] + ksize[0] \\
H_{out} = (H_{in}-1) * strides[1] - 2 * paddings[1] + ksize[1] \\
W_{out} = (W_{in}-1) * strides[2] - 2 * paddings[2] + ksize[2]
$$
)DOC");
  }
};

Y
Yang Yang 已提交
138
int UnpoolOutputSize(int input_size, int ksize, int padding, int stride) {
S
sweetsky0901 已提交
139
  int output_size = (input_size - 1) * stride - 2 * padding + ksize;
S
sweetsky0901 已提交
140 141 142 143
  return output_size;
}

class UnpoolOp : public framework::OperatorWithKernel {
S
sweetsky0901 已提交
144
 protected:
145
  framework::OpKernelType GetExpectedKernelType(
S
sweetsky0901 已提交
146
      const framework::ExecutionContext& ctx) const override {
147 148 149
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
S
sweetsky0901 已提交
150
  }
S
sweetsky0901 已提交
151

S
sweetsky0901 已提交
152 153 154
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
155 156 157
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Unpool");
    OP_INOUT_CHECK(ctx->HasInput("Indices"), "Input", "Indices", "Unpool");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Unpool");
S
sweetsky0901 已提交
158 159
    auto in_x_dims = ctx->GetInputDim("X");
    auto in_y_dims = ctx->GetInputDim("Indices");
S
sweetsky0901 已提交
160 161
    std::string unpooling_type =
        ctx->Attrs().Get<std::string>("unpooling_type");
S
sweetsky0901 已提交
162 163
    std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
S
sweetsky0901 已提交
164
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
165 166
    std::vector<int> output_size =
        ctx->Attrs().Get<std::vector<int>>("output_size");
167 168
    PADDLE_ENFORCE_EQ(in_x_dims.size() == 4, true,
                      platform::errors::InvalidArgument(
169 170
                          "Unpool Intput(X) must be of 4-dimensional, but "
                          "received Input(X)'s dimensions is %d.",
171
                          in_x_dims.size()));
172 173 174 175 176 177 178
    PADDLE_ENFORCE_EQ(in_x_dims, in_y_dims,
                      platform::errors::InvalidArgument(
                          "The dimensions of Input(X) must equal to be"
                          "the dimensions of Input(Indices), but received"
                          "dimensions of Input(X) is [%d], received dimensions"
                          "of Input(Indices) is [%d]",
                          in_x_dims, in_y_dims));
T
tink2123 已提交
179

S
sweetsky0901 已提交
180 181
    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
    for (size_t i = 0; i < ksize.size(); ++i) {
T
tink2123 已提交
182
      if (!ctx->IsRuntime() && in_x_dims[i + 2] <= 0) {
T
tink2123 已提交
183 184
        output_shape.push_back(-1);
      } else {
185
        output_shape.push_back(output_size[i]);
T
tink2123 已提交
186
      }
S
sweetsky0901 已提交
187
    }
188
    ctx->SetOutputDim("Out", pten::make_ddim(output_shape));
S
sweetsky0901 已提交
189
  }
S
sweetsky0901 已提交
190 191
};

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
class Unpool3dOp : public framework::OperatorWithKernel {
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
  }

 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Unpool3d");
    OP_INOUT_CHECK(ctx->HasInput("Indices"), "Input", "Indices", "Unpool3d");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Unpool3d");
    auto in_x_dims = ctx->GetInputDim("X");
    auto in_y_dims = ctx->GetInputDim("Indices");
    std::string unpooling_type =
        ctx->Attrs().Get<std::string>("unpooling_type");
    std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
    std::vector<int> output_size =
        ctx->Attrs().Get<std::vector<int>>("output_size");
    PADDLE_ENFORCE_EQ(in_x_dims.size() == 5, true,
                      platform::errors::InvalidArgument(
                          "Unpool Intput(X) must be of 5-dimensional, but "
                          "received Input(X)'s dimensions is %d.",
                          in_x_dims.size()));
    PADDLE_ENFORCE_EQ(in_x_dims, in_y_dims,
                      platform::errors::InvalidArgument(
                          "The dimensions of Input(X) must equal to be"
                          "the dimensions of Input(Indices), but received"
                          "dimensions of Input(X) is [%d], received dimensions"
                          "of Input(Indices) is [%d]",
                          in_x_dims, in_y_dims));

    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
    for (size_t i = 0; i < ksize.size(); ++i) {
      if (!ctx->IsRuntime() && in_x_dims[i + 2] <= 0) {
        output_shape.push_back(-1);
      } else {
        output_shape.push_back(output_size[i]);
      }
    }
237
    ctx->SetOutputDim("Out", pten::make_ddim(output_shape));
238 239 240
  }
};

241 242 243 244
template <typename T>
class UnpoolOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
245
  void Apply(GradOpPtr<T> op) const override {
246 247 248 249 250 251 252 253 254 255
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Indices", this->Input("Indices"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
  }
};

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
template <typename T>
class Unpool3dOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
  void Apply(GradOpPtr<T> op) const override {
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Indices", this->Input("Indices"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
  }
};

S
sweetsky0901 已提交
271
class UnpoolOpGrad : public framework::OperatorWithKernel {
S
sweetsky0901 已提交
272
 protected:
273
  framework::OpKernelType GetExpectedKernelType(
S
sweetsky0901 已提交
274
      const framework::ExecutionContext& ctx) const override {
275 276 277
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
S
sweetsky0901 已提交
278
  }
S
sweetsky0901 已提交
279

S
sweetsky0901 已提交
280 281 282
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
283 284 285
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "UnpoolGrad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
                   framework::GradVarName("X"), "UnpoolGrad");
S
sweetsky0901 已提交
286 287
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
S
sweetsky0901 已提交
288
};
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

class Unpool3dOpGrad : public framework::OperatorWithKernel {
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
  }

 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Unpool3dGrad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
                   framework::GradVarName("X"), "Unpool3dGrad");
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
};

S
sweetsky0901 已提交
309 310
}  // namespace operators
}  // namespace paddle
S
sweetsky0901 已提交
311 312

namespace ops = paddle::operators;
313 314 315
REGISTER_OPERATOR(unpool, ops::UnpoolOp, ops::Unpool2dOpMaker,
                  ops::UnpoolOpGradMaker<paddle::framework::OpDesc>,
                  ops::UnpoolOpGradMaker<paddle::imperative::OpBase>);
H
hong 已提交
316

317
REGISTER_OPERATOR(unpool_grad, ops::UnpoolOpGrad);
S
sweetsky0901 已提交
318
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
319 320 321 322 323 324
    unpool, ops::UnpoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnpoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    unpool_grad,
    ops::UnpoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnpoolGradKernel<paddle::platform::CPUDeviceContext, double>);
325 326 327 328 329 330 331 332 333 334 335 336 337

REGISTER_OPERATOR(unpool3d, ops::Unpool3dOp, ops::Unpool3dOpMaker,
                  ops::Unpool3dOpGradMaker<paddle::framework::OpDesc>,
                  ops::Unpool3dOpGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(unpool3d_grad, ops::Unpool3dOpGrad);
REGISTER_OP_CPU_KERNEL(
    unpool3d, ops::Unpool3dKernel<paddle::platform::CPUDeviceContext, float>,
    ops::Unpool3dKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    unpool3d_grad,
    ops::Unpool3dGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::Unpool3dGradKernel<paddle::platform::CPUDeviceContext, double>);