conv_transpose_mkldnn_op.cc 16.6 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include "boost/optional.hpp"
J
Jacek Czaja 已提交
16 17 18
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/malloc.h"
19
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
20 21 22 23 24 25 26 27
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using framework::DataLayout;

28
inline dnnl::memory::dims GetWeightsTz(const Tensor* filter, const int groups) {
29
  auto weights_tz = pten::vectorize(filter->dims());
30
  int g = std::max(groups, 1);
31
  int g_dim = (g > 1) ? 1 : 0;
32
  platform::GetGroupConvWeightsTz(weights_tz, g);
33 34
  // gIOHW -> gOIHW || IOHW -> OIHW
  std::swap(weights_tz[g_dim + 0], weights_tz[g_dim + 1]);
35 36 37 38 39
  return weights_tz;
}

template <typename T, typename K, typename T_out>
class ConvTransposeMKLDNNHandlerT
40
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::deconvolution_forward> {
J
Jacek Czaja 已提交
41
 public:
42
  ConvTransposeMKLDNNHandlerT(const framework::ExecutionContext& ctx,
43
                              const dnnl::engine mkldnn_engine,
44 45
                              const Tensor* input, const Tensor* filter,
                              const Tensor* bias, Tensor* output)
46
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::deconvolution_forward>(
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
            mkldnn_engine, ctx.GetPlace()),
        is_test_(ctx.Attr<bool>("is_test")) {
    PADDLE_ENFORCE_EQ(is_test_, true,
                      platform::errors::InvalidArgument(
                          "ConvTransposeMKLDNN works only for inference. "
                          "The attribute \'is_test\' value should be set to "
                          "True, but got is_test=False."));

    PADDLE_ENFORCE_EQ(
        input->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
            "Got wrong layout = %d for Input tensor.", input->layout()));
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                      platform::errors::InvalidArgument(
                          "Got wrong format for Input tensor. The input "
                          "format is undefined."));

    PADDLE_ENFORCE_EQ(
        filter->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
67
            "The filter tensor's layout should be %d, but got %d.",
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
            DataLayout::kMKLDNN, filter->layout()));
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                      platform::errors::InvalidArgument(
                          "Got wrong formats for Filter tensor."));

    PADDLE_ENFORCE_EQ(
        input->dims().size(), 4,
        platform::errors::InvalidArgument("Input must be with 4 dimensions, "
                                          "i.e. NCHW. but got dimension =%d",
                                          input->dims().size()));
    PADDLE_ENFORCE_EQ(
        filter->dims().size(), 4,
        platform::errors::InvalidArgument("Filter must be with 4 dimensions, "
                                          "i.e. OIHW, but got dimension =%d",
                                          filter->dims().size()));
F
FDInSky 已提交
83

84
    if (bias) {
F
FDInSky 已提交
85
      PADDLE_ENFORCE_EQ(
86
          bias->layout(), DataLayout::kMKLDNN,
87
          platform::errors::InvalidArgument(
88 89 90
              "The bias tensor's laytout should be %d, but got %d.",
              DataLayout::kMKLDNN, bias->layout()));
      PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
91
                        platform::errors::InvalidArgument(
92
                            "Got wrong format for Bias tensor."));
A
Adam 已提交
93

94
      PADDLE_ENFORCE_EQ(
95 96 97 98 99
          bias->dims().size(), 1,
          platform::errors::InvalidArgument("Bias must only have 1 dimension, "
                                            "i.e. X, but got dimension = %d .",
                                            bias->dims().size()));
    }
100

101
    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
102
    dnnl::memory::dims strides(begin(strides_temp), end(strides_temp));
103 104

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
105
    dnnl::memory::dims paddings(begin(paddings_temp), end(paddings_temp));
106 107

    std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
108
    dnnl::memory::dims dilations(begin(dilations_temp), end(dilations_temp));
109 110 111 112 113 114 115 116 117 118

    int groups = ctx.Attr<int>("groups");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");

    PADDLE_ENFORCE_EQ(
        strides.size(), 2,
        platform::errors::Unimplemented(
            "Now we only support 2d oneDNN convolution transpose op"));

    const auto& input_dims = input->dims();
119
    const auto data_dims = pten::slice_ddim(input_dims, 2, input_dims.size());
120 121
    const auto& filter_dims = filter->dims();
    const auto filter_data_dims =
122
        pten::slice_ddim(filter_dims, 2, filter_dims.size());
123

124
    const auto ksize = pten::vectorize(filter_data_dims);
125 126 127 128 129 130 131

    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             data_dims, strides, ksize);

    std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                   [](int64_t i) { return i - 1; });

132
    const auto src_tz = pten::vectorize(input->dims());
133
    const auto weights_tz = GetWeightsTz(filter, groups);
134
    const auto dst_tz = pten::vectorize(output->dims());
135 136 137 138 139 140 141 142 143 144 145 146
    const auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
    const auto chosen_memory_format = MKLDNNMemoryFormat::any;
    const std::string fuse_activation =
        ctx.Attr<std::string>("fuse_activation");
    const float fuse_alpha = ctx.Attr<float>("fuse_alpha");
    const float fuse_beta = ctx.Attr<float>("fuse_beta");

147
    auto data_type = dnnl::memory::data_type::f32;
148 149
    if (ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16" ||
        std::is_same<T_out, platform::bfloat16>::value)
150
      data_type = dnnl::memory::data_type::bf16;
151 152 153 154 155 156 157 158

    const auto src_md =
        platform::MKLDNNMemDesc(src_tz, data_type, chosen_memory_format);
    const auto weights_md =
        platform::MKLDNNMemDesc(weights_tz, data_type, chosen_memory_format);
    const auto dst_md = platform::MKLDNNMemDesc(
        dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);

159
    const dnnl::primitive_attr conv_trans_attr =
160
        CreatePostOps(fuse_activation, fuse_alpha, fuse_beta);
161 162
    auto fwd_prop_kind = is_test_ ? dnnl::prop_kind::forward_inference
                                  : dnnl::prop_kind::forward_training;
163
    if (bias) {
164
      std::vector<int64_t> bias_tz = pten::vectorize(bias->dims());
165 166 167 168 169 170 171 172 173 174 175
      const auto bias_md =
          platform::MKLDNNMemDesc(bias_tz, data_type, MKLDNNMemoryFormat::x);
      this->AcquireForwardPrimitiveDescriptor(
          conv_trans_attr, fwd_prop_kind, dnnl::algorithm::deconvolution_direct,
          src_md, weights_md, bias_md, dst_md, strides, dilations,
          mkldnn_paddings[0], mkldnn_paddings[1]);
    } else {
      this->AcquireForwardPrimitiveDescriptor(
          conv_trans_attr, fwd_prop_kind, dnnl::algorithm::deconvolution_direct,
          src_md, weights_md, dst_md, strides, dilations, mkldnn_paddings[0],
          mkldnn_paddings[1]);
176 177
    }
  }
J
Jacek Czaja 已提交
178

179 180 181 182 183
  dnnl::primitive_attr CreatePostOps(const std::string& fuse_activation,
                                     const float& fuse_alpha,
                                     const float& fuse_beta) {
    dnnl::primitive_attr conv_attr;
    dnnl::post_ops post_operations;
184 185 186 187 188

    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
      constexpr float scale = 1.0f;
189
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_relu,
190 191 192
                                     fuse_alpha, fuse_beta);
    } else if (fuse_activation == "relu6") {
      constexpr float scale = 1.0f;
193 194
      post_operations.append_eltwise(
          scale, dnnl::algorithm::eltwise_bounded_relu, fuse_alpha, fuse_beta);
195 196
    } else if (fuse_activation == "swish") {
      constexpr float scale = 1.0f;
197
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_swish,
198 199 200 201 202
                                     fuse_alpha, fuse_beta);
    }
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }
J
Jacek Czaja 已提交
203

204
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorder(
205
      const framework::Tensor* input) {
J
Jacek Czaja 已提交
206
    const T* input_data = input->data<T>();
207 208 209
    auto user_src_md = platform::MKLDNNMemDesc(pten::vectorize(input->dims()),
                                               platform::MKLDNNGetDataType<T>(),
                                               input->format());
210
    return platform::MKLDNNHandlerNoCachingT<T, dnnl::deconvolution_forward>::
211 212
        AcquireMemoryWithReorder(user_src_md, this->fwd_pd_->src_desc(),
                                 platform::to_void_cast<T>(input_data));
213 214
  }

215
  std::shared_ptr<dnnl::memory> AcquireWeightsMemoryWithReorder(
216 217 218 219 220 221 222 223
      const platform::MKLDNNDeviceContext& dev_ctx, const std::string& key,
      const framework::Tensor* filter, const int& groups) {
    const K* filter_data = filter->data<K>();
    auto weights_tz = GetWeightsTz(filter, groups);
    int g = std::max(groups, 1);

    auto user_src_md = platform::MKLDNNMemDesc(
        weights_tz, platform::MKLDNNGetDataType<K>(),
224
        (g == 1) ? MKLDNNMemoryFormat::iohw : MKLDNNMemoryFormat::giohw);
J
Jacek Czaja 已提交
225

226 227
    return this->template AcquireMemoryWithReorder<K>(
        dev_ctx, user_src_md, this->fwd_pd_->weights_desc(),
228 229
        platform::to_void_cast<K>(filter_data), key, "@weights_mem_p",
        is_test_);
230
  }
231

232
  template <typename F = T>
233
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorder(
234
      const platform::MKLDNNDeviceContext& dev_ctx,
235 236 237 238
      const dnnl::memory::desc& user_md, const dnnl::memory::desc& target_md,
      void* ptr, const std::string& key, const std::string& suffix,
      bool is_persistent = false, const std::vector<float>& scale_data = {1.0f},
      int mask = 0) {
239 240 241 242 243 244 245 246 247 248 249 250
    const auto target_key = key + suffix + "_target";
    const auto key_reorder_p = key + suffix + "reorder_p";
    const auto user_key = key + suffix + "_user";

    auto target_memory_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx.GetBlob(target_key));

    if (target_memory_p == nullptr) {
      auto user_memory_p =
          std::make_shared<dnnl::memory>(user_md, this->engine_, ptr);
      if (user_md != target_md) {
        target_memory_p =
251
            std::make_shared<dnnl::memory>(target_md, this->engine_);
252 253 254 255 256 257 258 259 260 261 262 263 264 265
        dnnl::reorder::primitive_desc reorder_pdesc;
        if (platform::is_int8<T>()) {
          dnnl::primitive_attr attr;
          attr.set_output_scales(mask, scale_data);
          reorder_pdesc = dnnl::reorder::primitive_desc(*user_memory_p,
                                                        *target_memory_p, attr);
        } else {
          reorder_pdesc =
              dnnl::reorder::primitive_desc(*user_memory_p, *target_memory_p);
        }
        auto reorder_p = std::make_shared<dnnl::reorder>(reorder_pdesc);
        dev_ctx.SetBlob(key_reorder_p, reorder_p);

        auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
C
chenjian 已提交
266 267 268
        platform::RecordEvent record_reorder(
            "int_reorder", platform::TracerEventType::UserDefined, 2,
            platform::EventRole::kUniqueOp);
269 270
        reorder_p->execute(astream, {{DNNL_ARG_FROM, *user_memory_p},
                                     {DNNL_ARG_TO, *target_memory_p}});
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
        astream.wait();
      } else {
        target_memory_p = user_memory_p;
      }
      dev_ctx.SetBlob(user_key, user_memory_p);
      dev_ctx.SetBlob(target_key, target_memory_p);
    } else if (!is_persistent) {
      auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();

      auto user_memory_p =
          std::static_pointer_cast<dnnl::memory>(dev_ctx.GetBlob(user_key));
      user_memory_p->set_data_handle(ptr);

      // TODO(jczaja): Here we detect if reorder is cached it means it is needed
      // need to change this to get rid of keys
286
      auto reorder_p = std::static_pointer_cast<dnnl::reorder>(
287 288
          dev_ctx.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
C
chenjian 已提交
289 290 291
        platform::RecordEvent record_reorder(
            "int_reorder", platform::TracerEventType::UserDefined, 2,
            platform::EventRole::kUniqueOp);
292 293
        reorder_p->execute(astream, {{DNNL_ARG_FROM, *user_memory_p},
                                     {DNNL_ARG_TO, *target_memory_p}});
294 295
        astream.wait();
      }
J
Jacek Czaja 已提交
296
    }
297
    return target_memory_p;
298 299
  }

300
  std::shared_ptr<dnnl::memory> AcquireBiasMemoryWithReorder(
301 302 303 304
      const platform::MKLDNNDeviceContext& dev_ctx, const std::string& key,
      const framework::Tensor* bias) {
    const K* bias_data = bias->data<K>();
    auto user_bias_md = platform::MKLDNNMemDesc(
305
        pten::vectorize(bias->dims()), platform::MKLDNNGetDataType<K>(),
306 307 308 309
        MKLDNNMemoryFormat::x);
    return this->AcquireMemoryWithReorder(
        dev_ctx, user_bias_md, this->fwd_pd_->bias_desc(),
        platform::to_void_cast<K>(bias_data), key, "@bias_mem_p", is_test_);
310
  }
311 312 313

 private:
  const bool is_test_;
314
};
J
Jacek Czaja 已提交
315

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
template <typename T, typename K>
class ConvTransposeMKLDNNOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      platform::errors::PreconditionNotMet(
                          "Operator DNNL ConvTranspose must use CPUPlace"));
    const bool is_bfloat16 =
        ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16";
    const bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    if (is_bfloat16) {
      if (force_fp32_output)
        Execute<float>(ctx);
      else
        Execute<platform::bfloat16>(ctx);
    } else {
      Execute<float>(ctx);
    }
  }
J
Jacek Czaja 已提交
335

336 337 338 339 340
  template <typename T_out>
  void Execute(const framework::ExecutionContext& ctx) const {
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
J
Jacek Czaja 已提交
341

342 343 344 345 346
    const auto* input = ctx.Input<Tensor>("Input");
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
347 348
    ConvTransposeMKLDNNHandlerT<T, K, T_out> handler(ctx, mkldnn_engine, input,
                                                     filter, bias, output);
349
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
350 351 352 353 354
    // Caching Key for weights is needed
    std::string key = platform::CreateKey(dev_ctx, ctx.InputName("Input"),
                                          ctx.InputName("Filter"),
                                          (bias ? ctx.InputName("Bias") : ""));
    key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);
355
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
356
        dev_ctx, key, filter, ctx.Attr<int>("groups"));
357 358 359 360 361 362

    std::shared_ptr<dnnl::memory> dst_memory_p =
        handler.template AcquireDstMemory<T_out>(output);
    auto conv_p = handler.AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> args = {
363 364 365
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};
A
Adam 已提交
366

J
Jacek Czaja 已提交
367
    if (bias) {
368 369
      auto bias_memory_p =
          handler.AcquireBiasMemoryWithReorder(dev_ctx, key, bias);
370
      args.insert({DNNL_ARG_BIAS, *bias_memory_p});
J
Jacek Czaja 已提交
371
    }
372 373
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    conv_p->execute(astream, args);
A
Adam 已提交
374
    astream.wait();
375 376
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
J
Jacek Czaja 已提交
377 378 379 380 381 382 383 384
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

385 386 387 388
REGISTER_OP_KERNEL(
    conv2d_transpose, MKLDNN, ::paddle::platform::CPUPlace,
    ops::ConvTransposeMKLDNNOpKernel<float, float>,
    ops::ConvTransposeMKLDNNOpKernel<paddle::platform::bfloat16, float>);