match_matrix_tensor_op.cc 16.7 KB
Newer Older
A
Aurelius84 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <fstream>
#include <iomanip>
#include <iostream>
18
#include <memory>
A
Aurelius84 已提交
19 20 21 22 23 24 25 26 27 28 29 30
#include <vector>

#include "paddle/fluid/operators/match_matrix_tensor_op.h"
#include "paddle/fluid/operators/search_compute.h"

namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;

void MatchMatrixTensorOP::InferShape(framework::InferShapeContext* ctx) const {
31 32 33 34 35
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "match_matrix_tensor");
  OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "match_matrix_tensor");
  OP_INOUT_CHECK(ctx->HasInput("W"), "Input", "W", "match_matrix_tensor");
  OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "match_matrix_tensor");
  OP_INOUT_CHECK(ctx->HasOutput("Tmp"), "Output", "Tmp", "match_matrix_tensor");
A
Aurelius84 已提交
36 37 38

  auto x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(x_dims.size(), 2,
39 40 41 42
                    platform::errors::InvalidArgument(
                        "The dimensions of Input(X) should be equal to 2, "
                        "but received %d.",
                        x_dims.size()));
A
Aurelius84 已提交
43 44 45

  auto y_dims = ctx->GetInputDim("Y");
  PADDLE_ENFORCE_EQ(y_dims.size(), 2,
46 47 48 49
                    platform::errors::InvalidArgument(
                        "The dimensions of Input(Y) should be equal to 2, "
                        "but received %d.",
                        y_dims.size()));
A
Aurelius84 已提交
50 51

  auto w_dims = ctx->GetInputDim("W");
52 53 54 55 56
  PADDLE_ENFORCE_EQ(w_dims.size(), 3,
                    platform::errors::InvalidArgument(
                        "The dimensions of Input(W) should be equal to 3, "
                        "but received %d.",
                        w_dims.size()));
A
Aurelius84 已提交
57 58

  int dim_t = ctx->Attrs().Get<int>("dim_t");
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
  PADDLE_ENFORCE_EQ(
      w_dims[0], x_dims[1],
      platform::errors::InvalidArgument(
          "The first dimension of Input(W) should be equal to the second "
          "dimension of Input(X). But received the first dimension of Input(W) "
          "is %d, the second dimension of Input(X) is %d.",
          w_dims[0], x_dims[1]));
  PADDLE_ENFORCE_EQ(
      w_dims[1], dim_t,
      platform::errors::InvalidArgument(
          "The second dimension of Input(W) should be equal to 'dim_t', but "
          "received the second dimension of Input(W) is %d, 'dim_t' is %d.",
          w_dims[1], dim_t));
  PADDLE_ENFORCE_EQ(
      w_dims[2], y_dims[1],
      platform::errors::InvalidArgument(
          "The last dimension of Input(W) should be equal to "
          "the second dimension of Input(Y). But received the last dimension "
          "of Input(W) is %d, the second dimension of Input(Y) is %d.",
          w_dims[2], y_dims[1]));
A
Aurelius84 已提交
79

80 81
  int64_t out_dim_0 = -1;
  int64_t tmp_dim_0 = -1;
A
Aurelius84 已提交
82 83
  if (ctx->IsRuntime()) {
    framework::Variable* x_var =
84
        BOOST_GET(framework::Variable*, ctx->GetInputVarPtrs("X")[0]);
A
Aurelius84 已提交
85
    const auto& x_lod = x_var->Get<LoDTensor>().lod();
86 87 88 89
    PADDLE_ENFORCE_EQ(x_lod.empty(), false,
                      platform::errors::InvalidArgument(
                          "The Input(X) should hold LoD information, but "
                          "received Input(X).lod() is empty."));
A
Aurelius84 已提交
90 91
    const auto& x_lod_0 = x_lod[0];
    PADDLE_ENFORCE_GE(x_lod_0.size(), 2,
92 93 94 95 96 97 98 99 100 101 102
                      platform::errors::InvalidArgument(
                          "The dimensions of Input(X)'s LoD data should be "
                          "equal to 2, but received %d.",
                          x_lod_0.size()));
    PADDLE_ENFORCE_EQ(x_dims[0], static_cast<int64_t>(x_lod_0.back()),
                      platform::errors::InvalidArgument(
                          "The last element of Input(X)'s LoD data should be "
                          "equal to the first dimension of Input(X). "
                          "But received the last element of Input(X)'s LoD "
                          "data is %d, the first dimension of Input(X) is %d.",
                          x_lod_0.back(), x_dims[0]));
A
Aurelius84 已提交
103 104

    framework::Variable* y_var =
105
        BOOST_GET(framework::Variable*, ctx->GetInputVarPtrs("Y")[0]);
A
Aurelius84 已提交
106
    const auto& y_lod = y_var->Get<LoDTensor>().lod();
107 108 109 110
    PADDLE_ENFORCE_EQ(y_lod.empty(), false,
                      platform::errors::InvalidArgument(
                          "The Input(Y) should hold LoD information, but "
                          "received Input(Y).lod() is empty."));
A
Aurelius84 已提交
111 112
    const auto& y_lod_0 = y_lod[0];
    PADDLE_ENFORCE_GE(y_lod_0.size(), 2,
113 114 115 116 117 118 119 120 121 122 123
                      platform::errors::InvalidArgument(
                          "The dimensions of Input(Y)'s LoD data should be "
                          "equal to 2, but received %d.",
                          y_lod_0.size()));
    PADDLE_ENFORCE_EQ(y_dims[0], static_cast<int64_t>(y_lod_0.back()),
                      platform::errors::InvalidArgument(
                          "The last element of Input(Y)'s LoD data should be "
                          "equal to the first dimension of Input(Y). "
                          "But received the last element of Input(Y)'s LoD "
                          "data is %d, the first dimension of Input(Y) is %d.",
                          y_lod_0.back(), y_dims[0]));
A
Aurelius84 已提交
124 125

    PADDLE_ENFORCE_EQ(x_lod_0.size(), y_lod_0.size(),
126 127 128 129 130 131
                      platform::errors::InvalidArgument(
                          "The dimensions of Input(X)'s and Input(Y)'s LoD "
                          "data should be equal. "
                          "But received the dimensions of Input(X)'s LoD is "
                          "%d, the dimensions of Input(Y)'s LoD is %d.",
                          x_lod_0.size(), y_lod_0.size()));
A
Aurelius84 已提交
132 133 134

    out_dim_0 = 0;
    for (size_t i = 1; i < x_lod_0.size(); i++) {
135 136
      int64_t x_len = x_lod_0[i] - x_lod_0[i - 1];
      int64_t y_len = y_lod_0[i] - y_lod_0[i - 1];
A
Aurelius84 已提交
137 138 139 140 141 142 143 144
      out_dim_0 += (x_len * y_len);
    }
    out_dim_0 *= dim_t;

    tmp_dim_0 = x_dims[0] * dim_t * x_dims[1];
  } else {
    // compile time
    framework::VarDesc* x_desc =
145
        BOOST_GET(framework::VarDesc*, ctx->GetInputVarPtrs("X")[0]);
146 147 148 149 150
    PADDLE_ENFORCE_GE(
        x_desc->GetLoDLevel(), 1,
        platform::errors::InvalidArgument("The LoD level of Input(X) should be "
                                          "greater than 1, but reviced %d.",
                                          x_desc->GetLoDLevel()));
A
Aurelius84 已提交
151
    framework::VarDesc* y_desc =
152
        BOOST_GET(framework::VarDesc*, ctx->GetInputVarPtrs("Y")[0]);
153 154 155 156 157
    PADDLE_ENFORCE_GE(
        y_desc->GetLoDLevel(), 1,
        platform::errors::InvalidArgument("The LoD level of Input(Y) should be "
                                          "greater than 1, but reviced %d.",
                                          y_desc->GetLoDLevel()));
158
    ctx->ShareLoD("X", "Out");
A
Aurelius84 已提交
159 160 161 162 163 164
  }

  std::vector<int64_t> out_dims_vec{out_dim_0};
  out_dims_vec.push_back(1);
  std::vector<int64_t> tmp_dims_vec{tmp_dim_0};
  tmp_dims_vec.push_back(1);
165 166
  ctx->SetOutputDim("Out", pten::make_ddim(out_dims_vec));
  ctx->SetOutputDim("Tmp", pten::make_ddim(tmp_dims_vec));
A
Aurelius84 已提交
167 168 169 170
}

void MatchMatrixTensorOpGrad::InferShape(
    framework::InferShapeContext* ctx) const {
171 172 173 174 175
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "match_matrix_tensor_grad");
  OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "match_matrix_tensor_grad");
  OP_INOUT_CHECK(ctx->HasInput("W"), "Input", "W", "match_matrix_tensor_grad");
  OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                 "Out@GRAD", "match_matrix_tensor_grad");
A
Aurelius84 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

  if (ctx->HasOutput(framework::GradVarName("X"))) {
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
  }
  if (ctx->HasOutput(framework::GradVarName("Y"))) {
    ctx->SetOutputDim(framework::GradVarName("Y"), ctx->GetInputDim("Y"));
    ctx->ShareLoD("Y", /*->*/ framework::GradVarName("Y"));
  }
  if (ctx->HasOutput(framework::GradVarName("W"))) {
    ctx->SetOutputDim(framework::GradVarName("W"), ctx->GetInputDim("W"));
  }
}

void MatchMatrixTensorOpMaker::Make() {
  AddInput("X",
           "X (LoDTensor, default LoDTensor<float>) Input variable which "
           "should contain lod information.");
  AddInput("Y",
           "Y (LoDTensor, default LoDTensor<float>) Input variable which "
           "should contain lod information.");
  AddInput("W", "W (Tensor), The weight of X and Y.");
  AddAttr<int>("dim_t", "the dim of W").SetDefault(1);
  AddOutput("Out",
            "(LoDTensor, default LoDTensor<float>) Output variable which "
            "is X * W * Y");
  AddOutput("Tmp",
            "(LoDTensor, default LoDTensor<float>) tmp variable which is "
            "used for X * W");
  AddComment(R"DOC(
      Match Matrix Tensor Operator

      This operator calculate X * W * Y, only support 2-D for X and Y.
      the output is a level-1 LodTensor: 
        level_0: dim_t
      
      NOTE: only support 'float32' data type now.

    )DOC");
}

template <typename DeviceContext, typename T>
class CPUMatchMatrixTensorOPKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<LoDTensor>("X");
    auto* y = ctx.Input<LoDTensor>("Y");
    auto* w = ctx.Input<Tensor>("W");
    auto* out = ctx.Output<LoDTensor>("Out");
    auto* tmp = ctx.Output<LoDTensor>("Tmp");

    int dim_t = ctx.Attr<int>("dim_t");
228
    int64_t dim_in = x->dims()[1];
A
Aurelius84 已提交
229 230 231 232 233

    const auto& offset_l = x->lod()[0];
    const auto& offset_r = y->lod()[0];

    std::vector<size_t> top_offset;
234
    size_t top_size = 0;
A
Aurelius84 已提交
235 236
    top_offset.push_back(top_size);
    for (size_t b = 0; b < x->lod()[0].size() - 1; b++) {
237 238
      size_t len_l = offset_l[b + 1] - offset_l[b];
      size_t len_r = offset_r[b + 1] - offset_r[b];
A
Aurelius84 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251
      top_size += dim_t * len_l * len_r;
      top_offset.push_back(top_size);
    }
    auto* out_data = out->mutable_data<T>(ctx.GetPlace());
    memset(out_data, 0.0, out->dims()[0] * out->dims()[1] * sizeof(T));

    auto* bottom_l_data = x->data<T>();
    auto* bottom_r_data = y->data<T>();
    auto* t_data = w->data<T>();
    auto* bottom_l_trans_data = tmp->mutable_data<T>(ctx.GetPlace());
    memset(bottom_l_trans_data, 0.0,
           tmp->dims()[0] * tmp->dims()[1] * sizeof(T));

252
    auto blas = pten::funcs::GetBlas<platform::CPUDeviceContext, T>(ctx);
A
Aurelius84 已提交
253 254 255 256 257 258

    call_gemm(blas, CblasNoTrans, CblasNoTrans, x->dims()[0], dim_t * dim_in,
              dim_in, 1.0f, bottom_l_data, t_data, 0.0f, bottom_l_trans_data);

    for (size_t b = 0; b < x->lod()[0].size() - 1; b++) {
      for (int t = 0; t < dim_t; t++) {
259 260
        size_t len_l = offset_l[b + 1] - offset_l[b];
        size_t len_r = offset_r[b + 1] - offset_r[b];
A
Aurelius84 已提交
261 262 263 264
        auto* top_data = out_data + top_offset[b] + t * len_l * len_r;
        const auto* l_t_data =
            bottom_l_trans_data + offset_l[b] * dim_t * dim_in + t * dim_in;
        const auto* r_data = bottom_r_data + offset_r[b] * dim_in;
265
        auto blas_2 = pten::funcs::GetBlas<platform::CPUDeviceContext, T>(ctx);
A
Aurelius84 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
        call_gemm_with_lda(blas_2, CblasNoTrans, CblasTrans, len_l, len_r,
                           dim_in, 1.0f, l_t_data, r_data, 0.0f, top_data,
                           dim_t * dim_in);
      }
    }

    framework::LoD out_lod;
    out_lod.push_back(top_offset);

    out->set_lod(out_lod);
  }
};

template <typename DeviceContext, typename T>
class CPUMatchMatrixTensorOPGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<LoDTensor>("X");
    auto* y = ctx.Input<LoDTensor>("Y");
    auto* w = ctx.Input<Tensor>("W");
    auto* tmp = ctx.Input<LoDTensor>("Tmp");

    int dim_t = ctx.Attr<int>("dim_t");
289
    int64_t dim_in = x->dims()[1];
A
Aurelius84 已提交
290 291 292

    const auto& offset_l = x->lod()[0];
    const auto& offset_r = y->lod()[0];
293 294
    std::vector<size_t> top_offset;
    size_t top_size = 0;
A
Aurelius84 已提交
295 296
    top_offset.push_back(top_size);
    for (size_t b = 0; b < x->lod()[0].size() - 1; b++) {
297 298
      size_t len_l = offset_l[b + 1] - offset_l[b];
      size_t len_r = offset_r[b + 1] - offset_r[b];
A
Aurelius84 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
      top_size += dim_t * len_l * len_r;
      top_offset.push_back(top_size);
    }

    auto* bottom_l_data = x->data<T>();
    auto* bottom_r_data = y->data<T>();
    auto* bottom_l_trans_data = tmp->data<T>();

    auto* d_out = ctx.Input<LoDTensor>(framework::GradVarName("Out"));
    auto* d_x = ctx.Output<LoDTensor>(framework::GradVarName("X"));
    auto* d_y = ctx.Output<LoDTensor>(framework::GradVarName("Y"));

    Tensor tmp_grad;
    tmp_grad.Resize(tmp->dims());
    auto* d_tmp_data = tmp_grad.mutable_data<T>(ctx.GetPlace());
    auto* top_diff = d_out->data<T>();
    auto* bottom_l_diff = d_x->mutable_data<T>(ctx.GetPlace());
    auto* bottom_r_diff = d_y->mutable_data<T>(ctx.GetPlace());
    auto* bottom_l_trans_diff = const_cast<T*>(d_tmp_data);
    memset(bottom_l_diff, 0.0, x->dims()[0] * x->dims()[1] * sizeof(T));
    memset(bottom_r_diff, 0.0, y->dims()[0] * y->dims()[1] * sizeof(T));
    memset(bottom_l_trans_diff, 0.0,
           tmp->dims()[0] * tmp->dims()[1] * sizeof(T));

    for (size_t b = 0; b < x->lod()[0].size() - 1; b++) {
      for (int t = 0; t < dim_t; t++) {
325 326
        size_t len_l = offset_l[b + 1] - offset_l[b];
        size_t len_r = offset_r[b + 1] - offset_r[b];
A
Aurelius84 已提交
327

328 329
        for (size_t i = 0; i < len_l; i++) {
          for (size_t j = 0; j < len_r; j++) {
A
Aurelius84 已提交
330 331 332 333 334 335 336 337 338 339 340
            auto diff =
                top_diff[top_offset[b] + t * len_l * len_r + i * len_r + j];
            auto* l_trans_data = bottom_l_trans_data +
                                 (offset_l[b] + i) * dim_in * dim_t +
                                 t * dim_in;
            auto* l_trans_diff = bottom_l_trans_diff +
                                 (offset_l[b] + i) * dim_in * dim_t +
                                 t * dim_in;
            auto* r_data = bottom_r_data + (offset_r[b] + j) * dim_in;
            auto* r_diff = bottom_r_diff + (offset_r[b] + j) * dim_in;
            if (diff != 0.0) {
341 342
              axpy(r_data, l_trans_diff, dim_in, diff);
              axpy(l_trans_data, r_diff, dim_in, diff);
A
Aurelius84 已提交
343 344 345 346 347 348
            }
          }
        }
      }
    }

349
    auto blas = pten::funcs::GetBlas<platform::CPUDeviceContext, T>(ctx);
A
Aurelius84 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

    auto* t_data = w->data<T>();
    auto* d_w = ctx.Output<Tensor>(framework::GradVarName("W"));
    auto* t_diff = d_w->mutable_data<T>(ctx.GetPlace());
    memset(t_diff, 0.0, w->dims()[0] * w->dims()[1] * w->dims()[2] * sizeof(T));
    // bottom_diff
    call_gemm(blas, CblasNoTrans, CblasTrans, x->dims()[0], dim_in,
              dim_t * dim_in, 1.0f, bottom_l_trans_diff, t_data, 1.0f,
              bottom_l_diff);

    // t_diff
    call_gemm(blas, CblasTrans, CblasNoTrans, dim_in, dim_t * dim_in,
              x->dims()[0], 1.0f, bottom_l_data, bottom_l_trans_diff, 1.0f,
              t_diff);
  }
};

367 368 369 370 371 372
template <typename T>
class MatchMatrixTensorGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
373
  void Apply(GradOpPtr<T> grad_op) const override {
374 375 376 377 378 379 380 381 382 383 384 385 386
    grad_op->SetType("match_matrix_tensor_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput("Y", this->Input("Y"));
    grad_op->SetInput("W", this->Input("W"));
    grad_op->SetInput("Tmp", this->Output("Tmp"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    grad_op->SetOutput(framework::GradVarName("W"), this->InputGrad("W"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

A
Aurelius84 已提交
387 388 389 390
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
391 392 393
REGISTER_OPERATOR(
    match_matrix_tensor, ops::MatchMatrixTensorOP,
    ops::MatchMatrixTensorOpMaker,
394 395
    ops::MatchMatrixTensorGradOpMaker<paddle::framework::OpDesc>,
    ops::MatchMatrixTensorGradOpMaker<paddle::imperative::OpBase>);
A
Aurelius84 已提交
396 397 398 399 400 401 402 403 404
REGISTER_OPERATOR(match_matrix_tensor_grad, ops::MatchMatrixTensorOpGrad);

REGISTER_OP_CPU_KERNEL(match_matrix_tensor,
                       ops::CPUMatchMatrixTensorOPKernel<
                           paddle::platform::CPUDeviceContext, float>);

REGISTER_OP_CPU_KERNEL(match_matrix_tensor_grad,
                       ops::CPUMatchMatrixTensorOPGradKernel<
                           paddle::platform::CPUDeviceContext, float>);