instance_norm_op.cc 29.0 KB
Newer Older
L
lvmengsi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/instance_norm_op.h"
#include <memory>
#include <string>
#include <unordered_map>
#include "paddle/fluid/framework/data_layout.h"
20
#include "paddle/fluid/framework/op_version_registry.h"
21
#include "paddle/pten/kernels/funcs/math_function.h"
L
lvmengsi 已提交
22 23 24 25 26

namespace paddle {
namespace operators {

void InstanceNormOp::InferShape(framework::InferShapeContext *ctx) const {
27 28 29 30 31 32
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "InstanceNorm");
  OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "InstanceNorm");
  OP_INOUT_CHECK(ctx->HasOutput("SavedMean"), "Output", "SavedMean",
                 "InstanceNorm");
  OP_INOUT_CHECK(ctx->HasOutput("SavedVariance"), "Output", "SavedVariance",
                 "InstanceNorm");
L
lvmengsi 已提交
33 34

  const auto x_dims = ctx->GetInputDim("X");
35
  PADDLE_ENFORCE_NE(pten::product(x_dims), 0,
36 37 38 39 40 41
                    platform::errors::PreconditionNotMet(
                        "The Input variable X(%s) has not "
                        "been initialized. You may need to confirm "
                        "if you put exe.run(startup_program) "
                        "after optimizer.minimize function.",
                        ctx->Inputs("X").front()));
42 43 44 45 46 47 48 49 50 51 52 53 54 55
  PADDLE_ENFORCE_GE(
      x_dims.size(), 2,
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of input X must "
          "greater than or equal to 2. But received: the shape of input "
          "X = [%s], the dimension of input X =[%d]",
          x_dims, x_dims.size()));
  PADDLE_ENFORCE_LE(
      x_dims.size(), 5,
      platform::errors::InvalidArgument(
          "ShapeError: the dimension of input X must "
          "smaller than or equal to 5, But received: the shape of input "
          "X = [%s], the dimension of input X = [%d]",
          x_dims, x_dims.size()));
L
lvmengsi 已提交
56 57 58 59
  auto N = x_dims[0];
  auto C = x_dims[1];
  auto NxC = N * C;

C
ceci3 已提交
60 61 62 63 64 65 66 67 68 69 70
  if (ctx->HasInput("Scale")) {
    auto scale_dim = ctx->GetInputDim("Scale");

    PADDLE_ENFORCE_EQ(
        scale_dim.size(), 1UL,
        platform::errors::InvalidArgument(
            "ShapeError: the dimension of scale must equal to 1."
            "But received: the shape of scale is [%s], the dimension "
            "of scale is [%d]",
            scale_dim, scale_dim.size()));

71
    bool check = !((!ctx->IsRuntime()) && (pten::product(scale_dim) <= 0));
C
ceci3 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

    if (check) {
      PADDLE_ENFORCE_EQ(scale_dim[0], C,
                        platform::errors::InvalidArgument(
                            "ShapeError: the shape of scale must equal to [%d]"
                            "But received: the shape of scale is [%d]",
                            C, scale_dim[0]));
    }
  }
  if (ctx->HasInput("Bias")) {
    auto bias_dim = ctx->GetInputDim("Bias");
    PADDLE_ENFORCE_EQ(
        bias_dim.size(), 1UL,
        platform::errors::InvalidArgument(
            "ShapeError: the dimension of bias must equal to 1."
            "But received: the shape of bias is [%s],the dimension "
            "of bias is [%d]",
            bias_dim, bias_dim.size()));

91
    bool check = !((!ctx->IsRuntime()) && (pten::product(bias_dim) <= 0));
C
ceci3 已提交
92 93 94 95 96 97 98
    if (check) {
      PADDLE_ENFORCE_EQ(bias_dim[0], C,
                        platform::errors::InvalidArgument(
                            "ShapeError: the shape of bias must equal to [%d]"
                            "But received: the shape of bias is [%d]",
                            C, bias_dim[0]));
    }
L
lvmengsi 已提交
99 100 101 102 103 104 105 106 107 108
  }

  ctx->SetOutputDim("Y", x_dims);
  ctx->SetOutputDim("SavedMean", {NxC});
  ctx->SetOutputDim("SavedVariance", {NxC});
  ctx->ShareLoD("X", "Y");
}

framework::OpKernelType InstanceNormOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
109
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
L
lvmengsi 已提交
110 111 112 113 114 115 116
  // By default, the type of the scale, bias, mean,
  // and var tensors should both be float. (For float or float16 input tensor)
  // or double (For double input tensor).
  auto in_param_type = framework::proto::VarType::FP32;
  if (input_data_type == framework::proto::VarType::FP64) {
    in_param_type = framework::proto::VarType::FP64;
  }
C
ceci3 已提交
117
  if (ctx.HasInput("Scale")) {
118 119
    PADDLE_ENFORCE_EQ(in_param_type, framework::TransToProtoVarType(
                                         ctx.Input<Tensor>("Scale")->dtype()),
C
ceci3 已提交
120 121 122 123
                      platform::errors::InvalidArgument(
                          "Scale input should be of float type"));
  }
  if (ctx.HasInput("Bias")) {
124 125
    PADDLE_ENFORCE_EQ(in_param_type, framework::TransToProtoVarType(
                                         ctx.Input<Tensor>("Bias")->dtype()),
C
ceci3 已提交
126 127 128
                      platform::errors::InvalidArgument(
                          "Bias input should be of float type"));
  }
L
lvmengsi 已提交
129 130 131 132 133 134 135 136 137

  return framework::OpKernelType(input_data_type, ctx.GetPlace());
}

void InstanceNormOpMaker::Make() {
  AddAttr<float>("epsilon", "")
      .SetDefault(1e-5)
      .AddCustomChecker([](const float &epsilon) {
        PADDLE_ENFORCE_EQ(epsilon >= 0.0f && epsilon <= 0.001f, true,
138 139
                          platform::errors::InvalidArgument(
                              "'epsilon' should be between 0.0 and 0.001."));
L
lvmengsi 已提交
140 141 142 143
      });
  AddInput("X", "The input tensor");
  AddInput("Scale",
           "Scale is a 1-dimensional tensor of size C "
C
ceci3 已提交
144 145
           "that is applied to the output")
      .AsDispensable();
L
lvmengsi 已提交
146 147
  AddInput("Bias",
           "Bias is a 1-dimensional tensor of size C "
C
ceci3 已提交
148 149
           "that is applied to the output")
      .AsDispensable();
L
lvmengsi 已提交
150 151 152 153
  AddOutput("Y", "result after normalization");
  AddOutput("SavedMean",
            "Mean of the current mini batch, "
            "will apply to output when training")
C
ceci3 已提交
154 155
      .AsIntermediate()
      .AsExtra();
L
lvmengsi 已提交
156 157 158
  AddOutput("SavedVariance",
            "Variance of the current mini batch, "
            "will apply to output when training")
C
ceci3 已提交
159 160
      .AsIntermediate()
      .AsExtra();
L
lvmengsi 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
  AddComment(R"DOC(
Instance Normalization.

Instance Norm has been implemented as disscussed in the paper:
https://arxiv.org/pdf/1607.08022.pdf
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is as following:
NCHW `[batch, in_channels, in_height, in_width]`

)DOC");
}

template <typename T>
class InstanceNormKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));

    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();

    const int N = x_dims[0];
    const int C = x_dims[1];
    const int NxC = N * C;

    const int sample_size = x->numel() / N / C;

    auto *y = ctx.Output<Tensor>("Y");
    auto *saved_mean = ctx.Output<Tensor>("SavedMean");
    auto *saved_variance = ctx.Output<Tensor>("SavedVariance");

    auto &dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
    auto *place = dev_ctx.eigen_device();

196 197 198
    Eigen::DSizes<int, 2> shape(NxC, sample_size);
// Once eigen on Windows is updated, the if branch can be removed.
#ifndef EIGEN_HAS_INDEX_LIST
L
lvmengsi 已提交
199 200 201
    Eigen::DSizes<int, 2> bcast(1, sample_size);
    Eigen::DSizes<int, 2> C_shape(C, 1);
    Eigen::DSizes<int, 2> NxC_shape(NxC, 1);
202 203 204 205 206 207 208 209 210 211
    Eigen::DSizes<int, 1> rdims(1);
#else
    Eigen::IndexList<Eigen::type2index<1>, int> bcast;
    bcast.set(1, sample_size);
    Eigen::IndexList<int, Eigen::type2index<1>> C_shape;
    C_shape.set(0, C);
    Eigen::IndexList<int, Eigen::type2index<1>> NxC_shape;
    NxC_shape.set(0, NxC);
    Eigen::IndexList<Eigen::type2index<1>> rdims;
#endif
L
lvmengsi 已提交
212

213
    pten::funcs::SetConstant<platform::CPUDeviceContext, T> set_constant;
L
lvmengsi 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

    saved_mean->mutable_data<T>(ctx.GetPlace());
    saved_variance->mutable_data<T>(ctx.GetPlace());
    set_constant(dev_ctx, saved_mean, static_cast<T>(0));
    set_constant(dev_ctx, saved_variance, static_cast<T>(0));

    auto saved_mean_a = framework::EigenVector<T>::Flatten(*saved_mean);
    auto saved_mean_e = saved_mean_a.reshape(NxC_shape);
    auto saved_variance_a = framework::EigenVector<T>::Flatten(*saved_variance);
    auto saved_variance_e = saved_variance_a.reshape(NxC_shape);

    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto x_arr = x_e.reshape(shape);

    saved_mean_e.device(*place) = x_arr.mean(rdims);
    auto saved_variance_arr =
        (x_arr - saved_mean_e.broadcast(bcast)).square().mean(rdims) + epsilon;

    saved_variance_e.device(*place) = saved_variance_arr.sqrt().inverse();

    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
C
ceci3 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

    Tensor scale_data;
    Tensor bias_data;
    if (!scale) {
      scale_data.mutable_data<T>({C}, ctx.GetPlace());
      set_constant(dev_ctx, &scale_data, static_cast<T>(1));
    }

    if (!bias) {
      bias_data.mutable_data<T>({C}, ctx.GetPlace());
      set_constant(dev_ctx, &bias_data, static_cast<T>(0));
    }
    auto scale_e = scale
                       ? framework::EigenVector<T>::Flatten(*scale)
                       : framework::EigenVector<T>::Flatten(
                             const_cast<const framework::Tensor &>(scale_data));
L
lvmengsi 已提交
252
    auto scale_arr = scale_e.reshape(C_shape);
C
ceci3 已提交
253 254 255
    auto bias_e = bias ? framework::EigenVector<T>::Flatten(*bias)
                       : framework::EigenVector<T>::Flatten(
                             const_cast<const framework::Tensor &>(bias_data));
L
lvmengsi 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    auto bias_arr = bias_e.reshape(C_shape);

    y->mutable_data<T>(ctx.GetPlace());
    auto y_e = framework::EigenVector<T>::Flatten(*y);
    auto y_arr = y_e.reshape(shape);

    // (x - mean) * inv_std * scale + bias
    Eigen::DSizes<int, 2> bcast_param(N, sample_size);
    y_arr.device(*place) = (x_arr - saved_mean_e.broadcast(bcast)) *
                               saved_variance_e.broadcast(bcast) *
                               scale_arr.broadcast(bcast_param) +
                           bias_arr.broadcast(bcast_param);
  }
};

void InstanceNormGradOp::InferShape(framework::InferShapeContext *ctx) const {
272 273 274 275 276 277 278
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "InstanceNormGrad");
  OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")), "Input",
                 framework::GradVarName("Y"), "InstanceNormGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedMean"), "Input", "SavedMean",
                 "InstanceNormGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedVariance"), "Input", "SavedVariance",
                 "InstanceNormGrad");
L
lvmengsi 已提交
279 280

  // check output
281 282
  OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
                 framework::GradVarName("X"), "InstanceNormGrad");
L
lvmengsi 已提交
283 284 285 286 287
  const auto x_dims = ctx->GetInputDim("X");
  const int C = x_dims[1];
  ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
  if (ctx->HasOutput(framework::GradVarName("Scale"))) {
    ctx->SetOutputDim(framework::GradVarName("Scale"), {C});
C
ceci3 已提交
288 289
  }
  if (ctx->HasOutput(framework::GradVarName("Bias"))) {
L
lvmengsi 已提交
290 291 292 293 294 295 296 297
    ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
  }
}

framework::OpKernelType InstanceNormGradOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  const auto *var = ctx.InputVar(framework::GradVarName("Y"));
  if (var == nullptr) {
C
ceci3 已提交
298 299
    PADDLE_THROW(
        platform::errors::NotFound("cannot find gradient variable of Y"));
L
lvmengsi 已提交
300 301 302 303 304 305 306 307
  }
  const Tensor *t = nullptr;
  if (var->IsType<Tensor>()) {
    t = &var->Get<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = &var->Get<LoDTensor>();
  }
  if (t == nullptr) {
C
ceci3 已提交
308 309
    PADDLE_THROW(
        platform::errors::InvalidArgument("gradient variable of Y is empty"));
L
lvmengsi 已提交
310
  }
311 312
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
L
lvmengsi 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
}

template <typename T>
class InstanceNormGradKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    const auto *saved_inv_variance = ctx.Input<Tensor>("SavedVariance");

    const auto &x_dims = x->dims();

    const int N = x_dims[0];
    const int C = x_dims[1];
    const int NxC = N * C;
    const int sample_size = x->numel() / N / C;

    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
    d_x->mutable_data<T>(ctx.GetPlace());

    auto &dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
    auto *place = dev_ctx.eigen_device();

341 342 343 344
    Eigen::DSizes<int, 2> rshape(NxC, sample_size);
    Eigen::DSizes<int, 2> param_shape(N, C);
    Eigen::DSizes<int, 2> shape(NxC, sample_size);
#ifndef EIGEN_HAS_INDEX_LIST
L
lvmengsi 已提交
345 346 347 348 349
    Eigen::DSizes<int, 1> rdims(0);
    Eigen::DSizes<int, 1> mean_rdims(1);
    Eigen::DSizes<int, 2> bcast(1, sample_size);
    Eigen::DSizes<int, 2> C_shape(C, 1);
    Eigen::DSizes<int, 2> NxC_shape(NxC, 1);
350 351 352 353 354 355 356 357 358 359
#else
    Eigen::IndexList<Eigen::type2index<0>> rdims;
    Eigen::IndexList<Eigen::type2index<1>> mean_rdims;
    Eigen::IndexList<Eigen::type2index<1>, int> bcast;
    bcast.set(1, sample_size);
    Eigen::IndexList<int, Eigen::type2index<1>> C_shape;
    C_shape.set(0, C);
    Eigen::IndexList<int, Eigen::type2index<1>> NxC_shape;
    NxC_shape.set(0, NxC);
#endif
L
lvmengsi 已提交
360

361
    pten::funcs::SetConstant<platform::CPUDeviceContext, T> set_constant;
C
ceci3 已提交
362 363 364 365 366 367 368 369 370 371 372

    Tensor scale_data;
    if (!scale) {
      scale_data.mutable_data<T>({C}, ctx.GetPlace());
      set_constant(dev_ctx, &scale_data, static_cast<T>(1));
    }

    auto scale_e = scale
                       ? framework::EigenVector<T>::Flatten(*scale)
                       : framework::EigenVector<T>::Flatten(
                             const_cast<const framework::Tensor &>(scale_data));
L
lvmengsi 已提交
373 374 375 376 377 378 379 380 381 382 383
    auto mean_e = framework::EigenVector<T>::Flatten(*saved_mean);
    auto inv_var_e = framework::EigenVector<T>::Flatten(*saved_inv_variance);
    auto dy_e = framework::EigenVector<T>::Flatten(*d_y);
    auto x_e = framework::EigenVector<T>::Flatten(*x);

    auto scale_arr = scale_e.reshape(C_shape);
    auto mean_arr = mean_e.reshape(NxC_shape);
    auto inv_var_arr = inv_var_e.reshape(NxC_shape);
    auto dy_arr = dy_e.reshape(shape);
    auto x_arr = x_e.reshape(shape);

384 385
    auto tmp = (x_arr - mean_arr.eval().broadcast(bcast)) *
               inv_var_arr.eval().broadcast(bcast);
L
lvmengsi 已提交
386 387 388 389 390 391 392 393 394 395 396

    // math: d_bias = np.sum(d_y, axis=(n,h,w))
    // math: d_scale = np.sum((X-mean) / inv_std * dy, axis=(n, h,w))
    if (d_scale && d_bias) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      d_bias->mutable_data<T>(ctx.GetPlace());
      set_constant(dev_ctx, d_scale, static_cast<T>(0));
      set_constant(dev_ctx, d_bias, static_cast<T>(0));

      auto d_scale_e = framework::EigenVector<T>::Flatten(*d_scale);
      auto d_scale_data = d_scale_e.reshape(C_shape);
C
ceci3 已提交
397
      auto d_bias_e = framework::EigenVector<T>::Flatten(*d_bias);
L
lvmengsi 已提交
398 399 400 401 402 403 404
      auto d_bias_data = d_bias_e.reshape(C_shape);
      d_bias_data.device(*place) =
          dy_arr.sum(mean_rdims).reshape(param_shape).sum(rdims);
      d_scale_data.device(*place) =
          (tmp * dy_arr).sum(mean_rdims).reshape(param_shape).sum(rdims);
    }

405 406
    auto dy_mean =
        dy_arr.mean(mean_rdims).reshape(NxC_shape).eval().broadcast(bcast);
L
lvmengsi 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423

    Eigen::DSizes<int, 2> bcast_param(N, sample_size);
    set_constant(dev_ctx, d_x, static_cast<T>(0));
    // math: d_x = scale * inv_var * d_y - scale * inv_var * np.sum(d_y,
    // axis=(h,w))
    //             - scale * (X - mean) * inv_var.pow(3) * np.sum(d_y * (X -
    //             mean),
    //             axis=(h,w))
    auto dx_e = framework::EigenVector<T>::Flatten(*d_x);
    auto dx_arr = dx_e.reshape(shape);
    dx_arr.device(*place) = scale_arr.broadcast(bcast_param) *
                            inv_var_arr.broadcast(bcast) *
                            (dy_arr - dy_mean -
                             tmp *
                                 (dy_arr * tmp)
                                     .mean(mean_rdims)
                                     .reshape(NxC_shape)
424
                                     .eval()
L
lvmengsi 已提交
425 426 427 428 429 430
                                     .broadcast(bcast));
  }
};

void InstanceNormDoubleGradOp::InferShape(
    framework::InferShapeContext *ctx) const {
431 432 433 434 435 436 437 438
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "InstanceNormDoubleGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedMean"), "Input", "SavedMean",
                 "InstanceNormDoubleGrad");
  OP_INOUT_CHECK(ctx->HasInput("SavedVariance"), "Input", "SavedVariance",
                 "InstanceNormDoubleGrad");
  OP_INOUT_CHECK(ctx->HasInput("DDX"), "Input", "DDX",
                 "InstanceNormDoubleGrad");
  OP_INOUT_CHECK(ctx->HasInput("DY"), "Input", "DY", "InstanceNormDoubleGrad");
L
lvmengsi 已提交
439 440

  // check output
441 442
  OP_INOUT_CHECK(ctx->HasOutput("DX"), "Output", "DX",
                 "InstanceNormDoubleGrad");
L
lvmengsi 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460

  const auto x_dims = ctx->GetInputDim("X");
  const int C = x_dims[1];
  if (ctx->HasOutput("DX")) {
    ctx->SetOutputDim("DX", x_dims);
  }
  if (ctx->HasOutput("DScale")) {
    ctx->SetOutputDim("DScale", {C});
  }
  if (ctx->HasOutput("DDY")) {
    ctx->ShareDim("X", "DDY");
  }
}

framework::OpKernelType InstanceNormDoubleGradOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
  const auto *var = ctx.InputVar("DY");
  if (var == nullptr) {
C
ceci3 已提交
461 462
    PADDLE_THROW(
        platform::errors::NotFound("cannot find gradient variable of Y"));
L
lvmengsi 已提交
463 464 465 466 467 468 469 470
  }
  const Tensor *t = nullptr;
  if (var->IsType<Tensor>()) {
    t = &var->Get<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = &var->Get<LoDTensor>();
  }
  if (t == nullptr) {
C
ceci3 已提交
471 472
    PADDLE_THROW(
        platform::errors::InvalidArgument("gradient variable of Y is empty"));
L
lvmengsi 已提交
473
  }
474 475
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
L
lvmengsi 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
}

template <typename T>
class InstanceNormDoubleGradKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *X = ctx.Input<Tensor>("X");
    const auto *Scale = ctx.Input<Tensor>("Scale");
    const auto *dY = ctx.Input<Tensor>("DY");
    const auto *Saved_mean = ctx.Input<Tensor>("SavedMean");
    const auto *Saved_variance = ctx.Input<Tensor>("SavedVariance");
    const auto *ddX = ctx.Input<Tensor>("DDX");
    const auto *ddScale = ctx.Input<Tensor>("DDScale");
    const auto *ddBias = ctx.Input<Tensor>("DDBias");

    auto *dX = ctx.Output<Tensor>("DX");
    auto *dScale = ctx.Output<Tensor>("DScale");
    auto *ddY = ctx.Output<Tensor>("DDY");

C
ceci3 已提交
496
    auto &dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
497
    pten::funcs::SetConstant<platform::CPUDeviceContext, T> set_constant;
C
ceci3 已提交
498

L
lvmengsi 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
    const auto &x_dims = X->dims();
    int N, C, H, W, D;
    ExtractNCWHD(x_dims, DataLayout::kNCHW, &N, &C, &H, &W, &D);
    const int sample_size = X->numel() / N / C;
    const int NxC = N * C;

    const T *mean_data = Saved_mean->data<T>();
    const T *inv_var_data = Saved_variance->data<T>();
    Tensor mean_tensor;
    Tensor inv_var_tensor;
    ConstEigenArrayMap<T> x_arr(X->data<T>(), sample_size, NxC);
    ConstEigenVectorArrayMap<T> mean_arr(mean_data, NxC);
    ConstEigenVectorArrayMap<T> inv_var_arr(inv_var_data, NxC);

    Tensor mean_tile;
    mean_tile.Resize({sample_size, NxC});
    mean_tile.mutable_data<T>(ctx.GetPlace());
    EigenArrayMap<T> mean_tile_data(mean_tile.mutable_data<T>(ctx.GetPlace()),
                                    sample_size, NxC);

    Tensor inv_var_tile;
    inv_var_tile.Resize({sample_size, NxC});
    inv_var_tile.mutable_data<T>(ctx.GetPlace());
    EigenArrayMap<T> inv_var_tile_data(
        inv_var_tile.mutable_data<T>(ctx.GetPlace()), sample_size, NxC);

    mean_tile_data = mean_arr.transpose().replicate(sample_size, 1);
    inv_var_tile_data = inv_var_arr.transpose().replicate(sample_size, 1);

C
ceci3 已提交
528 529 530 531 532 533 534
    Tensor Scale_data;
    if (!Scale) {
      Scale_data.mutable_data<T>({C}, ctx.GetPlace());
      set_constant(dev_ctx, &Scale_data, static_cast<T>(1));
    }
    ConstEigenVectorArrayMap<T> scale_arr(
        Scale ? Scale->data<T>() : Scale_data.data<T>(), C);
L
lvmengsi 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555

    Tensor scale_tile;
    scale_tile.Resize({sample_size, NxC});
    scale_tile.mutable_data<T>(ctx.GetPlace());
    EigenArrayMap<T> scale_tile_data(scale_tile.mutable_data<T>(ctx.GetPlace()),
                                     sample_size, NxC);
    scale_tile_data = scale_arr.transpose().replicate(sample_size, N);

    ConstEigenArrayMap<T> dy_arr(dY->data<T>(), sample_size, NxC);
    ConstEigenArrayMap<T> ddx_arr(ddX->data<T>(), sample_size, NxC);

    // math: dx = scale * ((x - mean) * inv_var / HxW * (np.mean(ddx,
    // axis=(h,w)) *
    //          np.sum(dy, axis=(h,w)) -
    //          np.sum(dy * ddx, axis=(h,w)) + 3 * np.mean(dy * (x - mean),
    //          axis=(h,w)) * inv_var.pow(2) *
    //          np.sum(ddx * (x - mean), axis=(h,w))) + inv_var.pow(3) / HxW *
    //          np.sum(ddx * (x - mean)) *
    //          (np.mean(dy, axis=(h,w)) - dy) + inv_var.pow(3) / HxW *
    //          np.sum(dy,
    //          axis=(h,w)) * (x - mean) *
556 557
    //          (np.mean(ddx, axis=(h,w)) - ddx)) + ddr * (dy * inv_var -
    //          inv_var *
L
lvmengsi 已提交
558 559
    //          np.mean(dy, axis=(h,w)) -
    //          inv_var.pow(3) * (x - mean) * np.mean(dy * (x - mean),
560
    //          axis=(h,w)))
L
lvmengsi 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593

    Tensor x_sub_mean_mul_invstd;
    x_sub_mean_mul_invstd.Resize({sample_size, NxC});
    x_sub_mean_mul_invstd.mutable_data<T>(ctx.GetPlace());
    EigenArrayMap<T> x_sub_mean_mul_invstd_arr(
        x_sub_mean_mul_invstd.mutable_data<T>(ctx.GetPlace()), sample_size,
        NxC);
    x_sub_mean_mul_invstd_arr = (x_arr - mean_tile_data) * inv_var_tile_data;

    if (dX) {
      dX->mutable_data<T>(ctx.GetPlace());
      set_constant(dev_ctx, dX, static_cast<T>(0));
      EigenArrayMap<T> dx_arr(dX->mutable_data<T>(ctx.GetPlace()), sample_size,
                              NxC);

      if (ddX) {
        dx_arr +=
            x_sub_mean_mul_invstd_arr * inv_var_tile_data * inv_var_tile_data /
            sample_size *
            (ddx_arr.colwise().sum() * dy_arr.colwise().sum() / sample_size -
             (dy_arr * ddx_arr).colwise().sum() +
             3. * (dy_arr * x_sub_mean_mul_invstd_arr).colwise().sum() *
                 (ddx_arr * x_sub_mean_mul_invstd_arr).colwise().sum() /
                 sample_size);

        dx_arr += (ddx_arr * x_sub_mean_mul_invstd_arr).colwise().sum() /
                  sample_size * inv_var_tile_data * inv_var_tile_data *
                  (dy_arr.colwise().sum() / sample_size - dy_arr);

        dx_arr += (dy_arr * x_sub_mean_mul_invstd_arr).colwise().sum() /
                  sample_size * inv_var_tile_data * inv_var_tile_data *
                  (ddx_arr.colwise().sum() / sample_size - ddx_arr);

594
        dx_arr = scale_tile_data * dx_arr;
L
lvmengsi 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
      }
      if (ddScale) {
        ConstEigenVectorArrayMap<T> ddscale_arr(ddScale->data<T>(), C);

        Tensor ddscale_tile;
        ddscale_tile.Resize({sample_size, NxC});
        ddscale_tile.mutable_data<T>(ctx.GetPlace());
        EigenArrayMap<T> ddscale_tile_data(
            ddscale_tile.mutable_data<T>(ctx.GetPlace()), sample_size, NxC);
        ddscale_tile_data = ddscale_arr.transpose().replicate(sample_size, N);

        dx_arr += (dy_arr * inv_var_tile_data -
                   dy_arr.colwise().sum() / sample_size * inv_var_tile_data -
                   x_sub_mean_mul_invstd_arr * inv_var_tile_data *
                       (dy_arr * x_sub_mean_mul_invstd_arr).colwise().sum() /
                       sample_size) *
                  ddscale_tile_data;
      }
    }
    if (dScale) {
      // math: dscale = inv_var * (dy - np.mean(dy, axis=(h,w) - (x-mean) *
      //            inv_var.pow(2) * np.mean(dy * (x-mean), axis=(h,w)))) * ddx
      dScale->mutable_data<T>(ctx.GetPlace());
      set_constant(dev_ctx, dScale, static_cast<T>(0));
      EigenVectorArrayMap<T> dscale_arr(dScale->mutable_data<T>(ctx.GetPlace()),
                                        C);
      if (ddX) {
        Tensor first_grad;
        first_grad.Resize({sample_size, NxC});
        first_grad.mutable_data<T>(ctx.GetPlace());
        set_constant(dev_ctx, &first_grad, static_cast<T>(0));
        EigenArrayMap<T> first_grad_arr(
            first_grad.mutable_data<T>(ctx.GetPlace()), sample_size, NxC);

        first_grad_arr +=
            inv_var_tile_data *
631 632
            (dy_arr -
             dy_arr.colwise().sum().replicate(sample_size, 1) / sample_size -
L
lvmengsi 已提交
633
             x_sub_mean_mul_invstd_arr *
634 635 636 637
                 (dy_arr * x_sub_mean_mul_invstd_arr)
                     .colwise()
                     .sum()
                     .replicate(sample_size, 1) /
L
lvmengsi 已提交
638
                 sample_size);
639
        first_grad_arr = first_grad_arr * ddx_arr;
L
lvmengsi 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
        for (int nc = 0; nc < NxC; ++nc) {
          int c = nc % C;
          dscale_arr(c) += first_grad_arr.colwise().sum()(nc);
        }
      }
    }
    if (ddY) {
      // math: ddy = (x - mean) * inv_var * ddscale + ddbias +
      //           scale * inv_var * (ddx - (x - mean) * inv_var.pow(2) *
      //           np.mean(ddx * (x - mean), axis=(h,w)))
      ddY->mutable_data<T>(ctx.GetPlace());
      set_constant(dev_ctx, ddY, static_cast<T>(0));
      EigenArrayMap<T> ddy_arr(ddY->mutable_data<T>(ctx.GetPlace()),
                               sample_size, NxC);
      if (ddX) {
        ddy_arr += scale_tile_data * inv_var_tile_data *
                   (ddx_arr - ddx_arr.colwise().sum() / sample_size -
                    x_sub_mean_mul_invstd_arr *
                        (ddx_arr * x_sub_mean_mul_invstd_arr).colwise().sum() /
                        sample_size);
      }
      if (ddScale && ddBias) {
        ConstEigenVectorArrayMap<T> ddscale_arr(ddScale->data<T>(), C);
        Tensor ddscale_tile;
        ddscale_tile.Resize({sample_size, NxC});
        ddscale_tile.mutable_data<T>(ctx.GetPlace());
        EigenArrayMap<T> ddscale_tile_data(
            ddscale_tile.mutable_data<T>(ctx.GetPlace()), sample_size, NxC);
        ddscale_tile_data = ddscale_arr.transpose().replicate(sample_size, N);

        ConstEigenVectorArrayMap<T> ddbias_arr(ddBias->data<T>(), C);
        Tensor ddbias_tile;
        ddbias_tile.Resize({sample_size, NxC});
        ddbias_tile.mutable_data<T>(ctx.GetPlace());
        EigenArrayMap<T> ddbias_tile_data(
            ddbias_tile.mutable_data<T>(ctx.GetPlace()), sample_size, NxC);
        ddbias_tile_data = ddbias_arr.transpose().replicate(sample_size, N);

        ddy_arr += x_sub_mean_mul_invstd_arr * ddscale_tile_data;
        ddy_arr += ddbias_tile_data;
      }
    }
  }
};

685
DECLARE_INPLACE_OP_INFERER(InstanceNormDoubleGradOpInplaceInferer,
L
lvmengsi 已提交
686 687 688 689 690 691 692
                           {"DY", "DDY"});

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(instance_norm, ops::InstanceNormOp, ops::InstanceNormOpMaker,
H
hong 已提交
693 694 695
                  ops::InstanceNormOpInferVarType,
                  ops::InstanceNormGradMaker<paddle::framework::OpDesc>,
                  ops::InstanceNormGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
696
REGISTER_OPERATOR(instance_norm_grad, ops::InstanceNormGradOp,
H
hong 已提交
697 698
                  ops::InstanceNormDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::InstanceNormDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
699
REGISTER_OPERATOR(instance_norm_grad_grad, ops::InstanceNormDoubleGradOp,
700
                  ops::InstanceNormDoubleGradOpInplaceInferer);
L
lvmengsi 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715

REGISTER_OP_CPU_KERNEL(
    instance_norm,
    ops::InstanceNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::InstanceNormKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    instance_norm_grad,
    ops::InstanceNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::InstanceNormGradKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    instance_norm_grad_grad,
    ops::InstanceNormDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                      float>,
    ops::InstanceNormDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                      double>);
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732

REGISTER_OP_VERSION(instance_norm)
    .AddCheckpoint(
        R"ROC(
      Change dispensable of attribute from False to True in instance_norm.
    )ROC",
        paddle::framework::compatible::OpVersionDesc()
            .ModifyAttr(
                "Bias",
                "The arg 'dispensable' of Input 'Bias' is changed: from "
                "'False' to 'True'.",
                true)
            .ModifyAttr(
                "Scale",
                "The arg 'dispensable' of Input 'Scale' is changed: from "
                "'False' to 'True'.",
                true));