flip_op.cu 4.7 KB
Newer Older
W
Wilber 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/flip_op.h"

#include <vector>
#include "paddle/fluid/memory/malloc.h"
19
#include "paddle/fluid/platform/complex.h"
W
Wilber 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using CUDADeviceContext = paddle::platform::CUDADeviceContext;

template <typename T>
__global__ void flip_cuda_kernel(const int N, const T* in_data, T* out_data,
                                 int64_t* x_shape, int64_t* x_stride,
                                 int* flip_dims, int flip_dims_size,
                                 int total_dims) {
  int idx = blockIdx.x * blockDim.x + threadIdx.x;
  if (idx >= N) {
    return;
  }

  int cur_indices = idx, rem = 0, dst_offset = 0;
  for (int i = 0; i < total_dims; ++i) {
    int64_t temp = cur_indices;
    cur_indices = cur_indices / x_stride[i];
    rem = temp - cur_indices * x_stride[i];
    // flip the indices if it is in flip_dims
    for (int j = 0; j < flip_dims_size; ++j) {
      if (i == flip_dims[j]) {
        cur_indices = x_shape[i] - 1 - cur_indices;
      }
    }
    dst_offset += cur_indices * x_stride[i];
    cur_indices = rem;
  }
  out_data[idx] = in_data[dst_offset];
}

template <typename T>
class FlipKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
59
    const auto gplace = ctx.GetPlace();
W
Wilber 已提交
60 61 62 63 64 65 66
    auto cplace = platform::CPUPlace();
    auto& dev_ctx = ctx.template device_context<CUDADeviceContext>();

    const Tensor* x = ctx.Input<Tensor>("X");
    Tensor* out = ctx.Output<Tensor>("Out");
    auto* in_data = x->data<T>();
    auto* out_data = out->mutable_data<T>(ctx.GetPlace());
Y
yaoxuefeng 已提交
67
    auto flip_dims = ctx.template Attr<std::vector<int>>("axis");
W
Wilber 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

    const int flip_dims_size = static_cast<int>(flip_dims.size());
    auto x_dims = x->dims();
    const int total_dims = x_dims.size();
    const int N = x->numel();

    int block_size = 512;
    dim3 dim_block(block_size);
    dim3 dim_grid((N + block_size - 1) / block_size);

    for (size_t i = 0; i < flip_dims.size(); ++i) {
      if (flip_dims[i] < 0) {
        flip_dims[i] += total_dims;
      }
    }

84 85 86
    auto x_stride = pten::stride(x_dims);
    std::vector<int64_t> x_dims_v = pten::vectorize(x_dims);
    std::vector<int64_t> x_stride_v = pten::vectorize(x_stride);
W
Wilber 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

    int bytes = total_dims * sizeof(int64_t);
    auto x_strides_array_tmp = memory::Alloc(dev_ctx, bytes);
    int64_t* x_strides_array_gpu =
        reinterpret_cast<int64_t*>(x_strides_array_tmp->ptr());
    memory::Copy(gplace, x_strides_array_gpu, cplace, x_stride_v.data(), bytes,
                 dev_ctx.stream());

    auto x_shape_array_tmp = memory::Alloc(dev_ctx, bytes);
    int64_t* x_shape_array_gpu =
        reinterpret_cast<int64_t*>(x_shape_array_tmp->ptr());
    memory::Copy(gplace, x_shape_array_gpu, cplace, x_dims_v.data(), bytes,
                 dev_ctx.stream());

    bytes = flip_dims_size * sizeof(int);
    auto flip_dims_array_tmp = memory::Alloc(dev_ctx, bytes);
    int* flip_dims_array_gpu =
        reinterpret_cast<int*>(flip_dims_array_tmp->ptr());
    memory::Copy(gplace, flip_dims_array_gpu, cplace, flip_dims.data(), bytes,
                 dev_ctx.stream());

    flip_cuda_kernel<
        T><<<dim_grid, dim_block, 0, ctx.cuda_device_context().stream()>>>(
        N, in_data, out_data, x_shape_array_gpu, x_strides_array_gpu,
        flip_dims_array_gpu, flip_dims_size, total_dims);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(
    flip, ops::FlipKernel<paddle::platform::CUDADeviceContext, float>,
    ops::FlipKernel<paddle::platform::CUDADeviceContext, double>,
    ops::FlipKernel<paddle::platform::CUDADeviceContext, plat::float16>,
    ops::FlipKernel<paddle::platform::CUDADeviceContext, int>,
    ops::FlipKernel<paddle::platform::CUDADeviceContext, int64_t>,
126 127 128 129
    ops::FlipKernel<paddle::platform::CUDADeviceContext, bool>,
    ops::FlipKernel<paddle::platform::CUDADeviceContext, plat::complex<float>>,
    ops::FlipKernel<paddle::platform::CUDADeviceContext,
                    plat::complex<double>>);