ps_dnn_model.py 6.0 KB
Newer Older
Z
ziyoujiyi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import math
import paddle.distributed.fleet as fleet


class DNNLayer(nn.Layer):
    def __init__(self,
                 sparse_feature_number,
                 sparse_feature_dim,
                 dense_feature_dim,
                 num_field,
                 layer_sizes,
                 sync_mode=None):
        super(DNNLayer, self).__init__()
        self.sync_mode = sync_mode
        self.sparse_feature_number = sparse_feature_number
        self.sparse_feature_dim = sparse_feature_dim
        self.dense_feature_dim = dense_feature_dim
        self.num_field = num_field
        self.layer_sizes = layer_sizes

        self.embedding = paddle.nn.Embedding(
            self.sparse_feature_number,
            self.sparse_feature_dim,
            sparse=True,
            weight_attr=paddle.ParamAttr(
                name="SparseFeatFactors",
                initializer=paddle.nn.initializer.Uniform()))

        sizes = [sparse_feature_dim * num_field + dense_feature_dim
                 ] + self.layer_sizes + [2]
        acts = ["relu" for _ in range(len(self.layer_sizes))] + [None]
        self._mlp_layers = []
        for i in range(len(layer_sizes) + 1):
            linear = paddle.nn.Linear(
                in_features=sizes[i],
                out_features=sizes[i + 1],
                weight_attr=paddle.ParamAttr(
                    initializer=paddle.nn.initializer.Normal(
                        std=1.0 / math.sqrt(sizes[i]))))
            self.add_sublayer('linear_%d' % i, linear)
            self._mlp_layers.append(linear)
            if acts[i] == 'relu':
                act = paddle.nn.ReLU()
                self.add_sublayer('act_%d' % i, act)
                self._mlp_layers.append(act)

    def forward(self, sparse_inputs, dense_inputs):

        sparse_embs = []
        for s_input in sparse_inputs:
            if self.sync_mode == "gpubox":
                emb = paddle.fluid.contrib.sparse_embedding(
                    input=s_input,
                    size=[self.sparse_feature_number, self.sparse_feature_dim],
                    param_attr=paddle.ParamAttr(name="embedding"))
            else:
                emb = self.embedding(s_input)
            emb = paddle.reshape(emb, shape=[-1, self.sparse_feature_dim])
            sparse_embs.append(emb)

        y_dnn = paddle.concat(x=sparse_embs + [dense_inputs], axis=1)

        for n_layer in self._mlp_layers:
            y_dnn = n_layer(y_dnn)

        return y_dnn


class StaticModel():
    def __init__(self, config):
        self.cost = None
        self.infer_target_var = None
        self.config = config
        self._init_hyper_parameters()
        self.sync_mode = config.get("runner.sync_mode")

    def _init_hyper_parameters(self):
        self.is_distributed = False
        self.distributed_embedding = False

        if self.config.get("hyper_parameters.distributed_embedding", 0) == 1:
            self.distributed_embedding = True

        self.sparse_feature_number = self.config.get(
            "hyper_parameters.sparse_feature_number")
        self.sparse_feature_dim = self.config.get(
            "hyper_parameters.sparse_feature_dim")
        self.sparse_inputs_slots = self.config.get(
            "hyper_parameters.sparse_inputs_slots")
        self.dense_input_dim = self.config.get(
            "hyper_parameters.dense_input_dim")
        self.learning_rate = self.config.get(
            "hyper_parameters.optimizer.learning_rate")
        self.fc_sizes = self.config.get("hyper_parameters.fc_sizes")

    def create_feeds(self, is_infer=False):
        dense_input = paddle.static.data(
            name="dense_input",
            shape=[None, self.dense_input_dim],
            dtype="float32")

        sparse_input_ids = [
            paddle.static.data(
                name="C" + str(i), shape=[None, 1], dtype="int64")
            for i in range(1, self.sparse_inputs_slots)
        ]

        label = paddle.static.data(name="label", shape=[None, 1], dtype="int64")

        feeds_list = [label] + sparse_input_ids + [dense_input]
        return feeds_list

    def net(self, input, is_infer=False):
        self.label_input = input[0]
        self.sparse_inputs = input[1:self.sparse_inputs_slots]
        self.dense_input = input[-1]
        sparse_number = self.sparse_inputs_slots - 1

        dnn_model = DNNLayer(
            self.sparse_feature_number,
            self.sparse_feature_dim,
            self.dense_input_dim,
            sparse_number,
            self.fc_sizes,
            sync_mode=self.sync_mode)

        raw_predict_2d = dnn_model.forward(self.sparse_inputs, self.dense_input)

        predict_2d = paddle.nn.functional.softmax(raw_predict_2d)

        self.predict = predict_2d

        auc, batch_auc, [
            self.batch_stat_pos, self.batch_stat_neg, self.stat_pos,
            self.stat_neg
        ] = paddle.static.auc(input=self.predict,
                              label=self.label_input,
                              num_thresholds=2**12,
                              slide_steps=20)
        self.inference_target_var = auc
        if is_infer:
            fetch_dict = {'auc': auc}
            return fetch_dict

        cost = paddle.nn.functional.cross_entropy(
            input=raw_predict_2d, label=self.label_input)
        avg_cost = paddle.mean(x=cost)
        self._cost = avg_cost

        fetch_dict = {'cost': avg_cost, 'auc': auc}
        return fetch_dict