margin_rank_loss_op.h 3.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14 15 16

#pragma once

Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yibing Liu 已提交
19 20 21 22 23 24 25

namespace paddle {
namespace operators {

template <typename T>
struct ReLU {
  HOSTDEVICE T operator()(const T& val) const {
26
    return val > 0 ? val : static_cast<T>(0);
Y
Yibing Liu 已提交
27 28 29 30 31 32
  }
};

template <typename T>
struct Heaviside {
  HOSTDEVICE T operator()(const T& val) const {
33
    return static_cast<T>(val > 0 ? 1 : 0);
Y
Yibing Liu 已提交
34 35 36
  }
};

H
huangjiyi 已提交
37
template <typename T, typename DeviceContext>
Y
Yibing Liu 已提交
38
class MarginRankLossKernel : public framework::OpKernel<T> {
Y
Yibing Liu 已提交
39 40
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
41 42
    auto* out_t = ctx.Output<phi::DenseTensor>("Out");
    auto* act_t = ctx.Output<phi::DenseTensor>("Activated");
Y
Yibing Liu 已提交
43

44 45 46
    auto* label_t = ctx.Input<phi::DenseTensor>("Label");
    auto* x1_t = ctx.Input<phi::DenseTensor>("X1");
    auto* x2_t = ctx.Input<phi::DenseTensor>("X2");
Y
Yibing Liu 已提交
47 48 49 50

    out_t->mutable_data<T>(ctx.GetPlace());
    act_t->mutable_data<T>(ctx.GetPlace());

51
    auto margin = static_cast<T>(ctx.Attr<T>("margin"));
Y
Yibing Liu 已提交
52 53 54 55 56 57 58
    auto out = framework::EigenVector<T>::Flatten(*out_t);
    auto act = framework::EigenVector<T>::Flatten(*act_t);

    auto label = framework::EigenVector<T>::Flatten(*label_t);
    auto x1 = framework::EigenVector<T>::Flatten(*x1_t);
    auto x2 = framework::EigenVector<T>::Flatten(*x2_t);

Q
QI JUN 已提交
59
    auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
Y
Yibing Liu 已提交
60
    out.device(dev) = (-label * (x1 - x2) + margin).unaryExpr(ReLU<T>());
61
    act.device(dev) = out.unaryExpr(Heaviside<T>());
Y
Yibing Liu 已提交
62 63 64
  }
};

H
huangjiyi 已提交
65
template <typename T, typename DeviceContext>
Y
Yibing Liu 已提交
66
class MarginRankLossGradKernel : public framework::OpKernel<T> {
Y
Yibing Liu 已提交
67 68
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
69 70
    auto* d_x1_t = ctx.Output<phi::DenseTensor>(framework::GradVarName("X1"));
    auto* d_x2_t = ctx.Output<phi::DenseTensor>(framework::GradVarName("X2"));
Y
Yibing Liu 已提交
71

72 73 74
    auto* act_t = ctx.Input<phi::DenseTensor>("Activated");
    auto* d_out_t = ctx.Input<phi::DenseTensor>(framework::GradVarName("Out"));
    auto* label_t = ctx.Input<phi::DenseTensor>("Label");
Y
Yibing Liu 已提交
75 76 77 78

    auto d_out = framework::EigenVector<T>::Flatten(*d_out_t);
    auto act = framework::EigenVector<T>::Flatten(*act_t);
    auto label = framework::EigenVector<T>::Flatten(*label_t);
Q
QI JUN 已提交
79
    auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
Y
Yibing Liu 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

    // compute d_x1
    if (d_x1_t) {
      d_x1_t->mutable_data<T>(ctx.GetPlace());
      auto d_x1 = framework::EigenVector<T>::Flatten(*d_x1_t);
      d_x1.device(dev) = -d_out * act * label;
    }
    // compute d_x2
    if (d_x2_t) {
      d_x2_t->mutable_data<T>(ctx.GetPlace());
      auto d_x2 = framework::EigenVector<T>::Flatten(*d_x2_t);
      d_x2.device(dev) = d_out * act * label;
    }
  }
};
}  // namespace operators
}  // namespace paddle