top_k_grad_kernel.cc 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/top_k_grad_kernel.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {

template <typename T, typename Type>
static void FullTopKAssign(const Type& input_height,
                           const Type& input_width,
                           const int& input_dim,
                           const DenseTensor* input,
                           const DenseTensor* indices,
                           T* output_data,
                           const int& k) {
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (Type i = 0; i < input_height; ++i) {
    if (input_dim == 1) {
      auto e_input = EigenVector<T>::Flatten(*input);
      auto e_indices = EigenVector<Type>::Flatten(*indices);
      for (Type j = 0; j < k; ++j) {
        output_data[i * input_width + e_indices(j)] = e_input(j);
      }
    } else {
      auto e_input = EigenMatrix<T>::Reshape(*input, input_dim - 1);
      auto e_indices = EigenMatrix<Type>::Reshape(*indices, input_dim - 1);
      for (Type j = 0; j < k; ++j) {
        output_data[i * input_width + e_indices(i, j)] = e_input(i, j);
      }
    }
  }
}

template <typename T, typename Context>
void TopkGradKernel(const Context& dev_ctx,
                    const DenseTensor& out_grad,
                    const DenseTensor& x,
                    const DenseTensor& indices,
                    int k,
                    int axis,
                    bool largest,
                    bool sorted,
                    DenseTensor* x_grad) {
  const auto& in_dims = x.dims();
  const auto& out_dims = indices.dims();

  // axis < 0, get the real axis
  axis = (axis < 0) ? (in_dims.size() + axis) : axis;

  T* x_grad_data = dev_ctx.template Alloc<T>(x_grad);
  if (axis + 1 == in_dims.size()) {
    // allocate the memory for the input_grad

    // assign the out_grad to input_grad directly
    const int64_t input_height =
        phi::product(phi::slice_ddim(in_dims, 0, in_dims.size() - 1));
    const int64_t input_width = in_dims[in_dims.size() - 1];

    // init the output grad with 0, because some input elements has no grad
    memset(x_grad_data, 0, x_grad->numel() * sizeof(T));
    // Assign the output_grad to input_grad
    FullTopKAssign(input_height,
                   input_width,
                   in_dims.size(),
                   &out_grad,
                   &indices,
                   x_grad_data,
                   k);
  } else {
    // can not assign grad to input_grad, must do the transpose
    std::vector<int> trans;
    for (int i = 0; i < axis; i++) {
      trans.emplace_back(i);
    }
    trans.emplace_back(out_dims.size() - 1);
    for (int i = axis + 1; i < out_dims.size() - 1; i++) {
      trans.emplace_back(i);
    }
    trans.emplace_back(axis);
    phi::DDim trans_dims(out_dims);
    phi::DDim trans_in_dims(in_dims);
    for (size_t i = 0; i < trans.size(); i++) {
      trans_dims[i] = out_dims[trans[i]];
      trans_in_dims[i] = in_dims[trans[i]];
    }
    // transpose the out_grad, indices
    DenseTensor trans_dO;
    DenseTensor trans_ind;
    trans_dO.Resize(trans_dims);
    trans_ind.Resize(trans_dims);
    dev_ctx.template Alloc<T>(&trans_dO);
    dev_ctx.template Alloc<int64_t>(&trans_ind);
    int ndims = trans.size();

    // Do transpose
    funcs::TransCompute<phi::CPUContext, T>(
        ndims, dev_ctx, out_grad, &trans_dO, trans);
    funcs::TransCompute<phi::CPUContext, int64_t>(
        ndims, dev_ctx, indices, &trans_ind, trans);
    const int64_t input_height = phi::product(
        phi::slice_ddim(trans_in_dims, 0, trans_in_dims.size() - 1));
    const int64_t input_width = trans_in_dims[trans_in_dims.size() - 1];

    // Assign the out_grad to tranpose input_grad
    DenseTensor tmp_out;
    tmp_out.Resize(trans_in_dims);
    T* t_out = dev_ctx.template Alloc<T>(&tmp_out);
    memset(t_out, 0, x_grad->numel() * sizeof(T));

    FullTopKAssign<T, int64_t>(input_height,
                               input_width,
                               in_dims.size(),
                               &trans_dO,
                               &trans_ind,
                               t_out,
                               k);

    // Transpose back
    funcs::TransCompute<phi::CPUContext, T>(
        ndims, dev_ctx, tmp_out, x_grad, trans);
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(top_k_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::TopkGradKernel,
                   float,
                   double,
                   int32_t,
                   int64_t) {}