recurrent_op_utils.cc 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/rnn/recurrent_op_utils.h"

namespace paddle {
namespace operators {
namespace rnn {

D
dongzhihong 已提交
21 22 23
namespace f = paddle::framework;

using Tensor = framework::Tensor;
24
using LoDTensor = framework::LoDTensor;
25 26

void SegmentInputs(const std::vector<Scope*>& step_scopes,
Y
Yan Chunwei 已提交
27 28
                   const std::vector<std::string>& inlinks,
                   const size_t seq_len, bool infer_shape_mode) {
29 30
  PADDLE_ENFORCE(!inlinks.empty(), "no in links are provided.");
  for (size_t i = 0; i < inlinks.size(); ++i) {
Y
Yan Chunwei 已提交
31 32 33 34
    // global inputs
    auto input_var = step_scopes[0]->parent().FindVar(inlinks[i]);
    PADDLE_ENFORCE_NOT_NULL(input_var, "input link [%s] is not in scope.",
                            inlinks[i]);
35

36
    LoDTensor* input = input_var->GetMutable<LoDTensor>();
D
dongzhihong 已提交
37
    f::DDim dims = input->dims();
Y
Yan Chunwei 已提交
38 39
    PADDLE_ENFORCE_EQ(static_cast<size_t>(dims[0]), seq_len,
                      "all the inlinks be the same length");
D
dongzhihong 已提交
40
    f::DDim step_dims = slice_ddim(dims, 1, dims.size());
41 42
    for (size_t j = 0; j < seq_len; j++) {
      Tensor* step_input =
Y
Yan Chunwei 已提交
43
          step_scopes[j]->NewVar(inlinks[i])->GetMutable<Tensor>();
44
      if (!infer_shape_mode) {
45 46
        // The input of operators of each step is Tensor here.
        // Maybe need to modify Slice function.
47 48 49 50 51 52 53 54
        *step_input = input->Slice<float>(j, j + 1);
      }
      step_input->Resize(step_dims);
    }
  }
}

void ConcatOutputs(const std::vector<Scope*>& step_scopes,
Y
Yan Chunwei 已提交
55 56
                   const std::vector<std::string>& outlinks,
                   const size_t seq_len, bool infer_shape_mode) {
57
  for (size_t i = 0; i < outlinks.size(); i++) {
Y
Yan Chunwei 已提交
58 59 60
    auto output_var = step_scopes[0]->parent().FindVar(outlinks[i]);
    PADDLE_ENFORCE_NOT_NULL(output_var, "output link [%s] is not in scope.",
                            outlinks[i]);
61
    LoDTensor* output = output_var->GetMutable<LoDTensor>();
Y
Yan Chunwei 已提交
62

63
    if (infer_shape_mode) {
Y
Yan Chunwei 已提交
64 65
      auto step_scope_var = step_scopes[0]->FindVar(outlinks[i]);
      PADDLE_ENFORCE_NOT_NULL(step_scope_var, "%s not in scope", outlinks[i]);
66 67
      f::DDim step_dims =
          step_scope_var->template GetMutable<LoDTensor>()->dims();
Q
qijun 已提交
68
      std::vector<int64_t> dims_vec = vectorize(step_dims);
69
      dims_vec.insert(dims_vec.begin(), seq_len);
D
dongzhihong 已提交
70
      output->Resize(f::make_ddim(dims_vec));
71 72 73
    } else {
      output->mutable_data<float>(platform::CPUPlace());
      for (size_t j = 0; j < seq_len; j++) {
Y
Yan Chunwei 已提交
74 75
        LoDTensor* step_output =
            step_scopes[j]->FindVar(outlinks[i])->GetMutable<LoDTensor>();
76 77 78 79 80 81 82 83 84 85 86 87 88
        // TODO(luotao02) data type and platform::DeviceContext() should set
        // correctly
        (output->Slice<float>(j, j + 1))
            .CopyFrom<float>(*step_output, platform::CPUPlace());
      }
    }
  }
}

void LinkMemories(const std::vector<Scope*>& scopes,
                  const std::vector<rnn::MemoryAttr>& memories,
                  const size_t step_id, const int offset,
                  bool infer_shape_mode) {
Y
Yan Chunwei 已提交
89 90 91 92 93 94 95 96 97
  PADDLE_ENFORCE_LT(step_id, scopes.size(),
                    "step [%d] is out of range of step scopes' size [%d]",
                    step_id, scopes.size());
  PADDLE_ENFORCE_GE(static_cast<int>(step_id) + offset, 0,
                    "offset [%d] must be large than -[%d]", offset, step_id);
  PADDLE_ENFORCE_LT(
      step_id + offset, scopes.size(),
      "offset [%d] is out of range, it must be less than (%d - %d)", offset,
      scopes.size(), step_id);
98 99 100
  auto scope = scopes[step_id];
  auto linked_scope = scopes[step_id + offset];
  for (auto& attr : memories) {
101 102
    auto mem = scope->FindVar(attr.pre_var)->GetMutable<LoDTensor>();
    auto linked_mem = linked_scope->FindVar(attr.var)->GetMutable<LoDTensor>();
103 104 105 106 107 108 109 110 111
    if (infer_shape_mode) {
      mem->Resize(linked_mem->dims());
    } else {
      mem->ShareDataWith<float>(*linked_mem);
    }
  }
}

void InitArgument(const ArgumentName& name, Argument* arg,
D
dongzhihong 已提交
112
                  const framework::OperatorBase& op) {
113 114
  arg->step_scopes = op.Output(name.step_scopes);

Y
Yan Chunwei 已提交
115
  arg->inlinks = op.Inputs(name.inlinks);
116

Y
Yan Chunwei 已提交
117
  arg->outlinks = op.Outputs(name.outlinks);
118 119 120 121

  auto boot_memories = op.Inputs(name.boot_memories);

  // attributes
Y
Yu Yang 已提交
122 123
  auto memories = op.Attr<std::vector<std::string>>(name.memories);
  auto pre_memories = op.Attr<std::vector<std::string>>(name.pre_memories);
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

  PADDLE_ENFORCE(memories.size() == boot_memories.size(),
                 "the size of memories, boot_memories don't match:%d,%d",
                 memories.size(), boot_memories.size());
  PADDLE_ENFORCE(pre_memories.size() == boot_memories.size(),
                 "the size of pre_memories, boot_memories don't match:%d,%d",
                 pre_memories.size(), boot_memories.size());
  PADDLE_ENFORCE(memories.size() > 0, "more than 1 memories should be set");

  for (size_t i = 0; i < memories.size(); ++i) {
    rnn::MemoryAttr mem_attr;
    mem_attr.var = memories[i];
    mem_attr.pre_var = pre_memories[i];
    mem_attr.boot_var = boot_memories[i];
    (arg->memories).push_back(mem_attr);
  }
}

}  // namespace rnn
}  // namespace operators
}  // namespace paddle