profiler.py 34.3 KB
Newer Older
C
chenjian 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
C
chenjian 已提交
2
#
C
chenjian 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
C
chenjian 已提交
6
#
C
chenjian 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
C
chenjian 已提交
8
#
C
chenjian 已提交
9 10 11 12 13 14 15 16 17 18 19 20
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import socket
import datetime
from enum import Enum
from typing import Any, Callable, Iterable, Optional, Union
from warnings import warn
21 22
import importlib
import json
C
chenjian 已提交
23 24 25 26 27 28

import paddle
from paddle.fluid.core import (_Profiler, _ProfilerResult, ProfilerOptions,
                               TracerEventType)

from .utils import RecordEvent, wrap_optimizers
C
chenjian 已提交
29
from .profiler_statistic import StatisticData, _build_table, SortedKeys
30
from paddle.profiler import utils
Z
Zhang Ting 已提交
31
from .timer import benchmark
C
chenjian 已提交
32 33 34 35


class ProfilerState(Enum):
    r"""
C
chenjian 已提交
36
    ProfilerState is used to present the state of :ref:`Profiler <api_paddle_profiler_Profiler>` .
C
chenjian 已提交
37

C
chenjian 已提交
38
    The meaning of each ProfilerState is as following
C
chenjian 已提交
39

C
chenjian 已提交
40
    - **ProfilerState.CLOSED** : The profiler is closed, and no profiling data will be recorded.
C
chenjian 已提交
41

C
chenjian 已提交
42
    - **ProfilerState.READY** : The profiler is open, but the data will not be recorded. This state is used for reducing overhead influence when profiler starts.
C
chenjian 已提交
43

C
chenjian 已提交
44 45 46
    - **ProfilerState.RECORD** : The profiler is open, and the data will be recorded.

    - **ProfilerState.RECORD_AND_RETURN** : The profiler is open, and this state stands for the last batch of "RECORD" state in current profiling period. The collected data will be returned in this state.
C
chenjian 已提交
47 48 49 50
    """
    CLOSED = 0
    READY = 1
    RECORD = 2
C
chenjian 已提交
51
    RECORD_AND_RETURN = 3  # the last step of RECORD
C
chenjian 已提交
52 53 54 55


class ProfilerTarget(Enum):
    r"""
C
chenjian 已提交
56
    ProfilerTarget is used to specify target device for :ref:`profiling <api_paddle_profiler_Profiler>` . Only CPU and GPU are supported currently.
C
chenjian 已提交
57

C
chenjian 已提交
58 59 60 61 62
    The meaning of each ProfilerState is as following

    - **ProfilerTarget.CPU** : Profile events on CPU.

    - **ProfilerTarget.GPU** : Profile events on GPU.
C
chenjian 已提交
63 64 65 66 67 68 69 70 71 72 73 74
    """
    CPU = 0
    GPU = 1


def make_scheduler(*,
                   closed: int,
                   ready: int,
                   record: int,
                   repeat: int=0,
                   skip_first: int=0) -> Callable:
    r"""
C
chenjian 已提交
75
    Return a scheduler function, which scheduler the :ref:`state <api_paddle_profiler_ProfilerState>` according to the setting.
C
chenjian 已提交
76 77
    The state transform confirms to:

C
chenjian 已提交
78 79 80 81 82 83 84 85
    .. code-block:: text

        (CLOSED)  (CLOSED)    (CLOSED)  (READY)    (RECORD,last RETURN)      (CLOSED)
        START -> skip_first -> closed -> ready    ->    record       ->      END
                                |                        |
                                |                        | (if has_repeated < repeat)
                                - - - - - - - - - - - -
        Note that repeat <= 0 means the cycle will continue until the profiler exits.
C
chenjian 已提交
86

C
chenjian 已提交
87
    Args:
C
chenjian 已提交
88
        closed(int): The number of steps in state ProfilerState.CLOSED.
C
chenjian 已提交
89
        ready(int):  The number of steps in state ProfilerState.READY.
C
chenjian 已提交
90 91 92
        record(int): The number of steps in state ProfilerState.RECORD, and the state in last step will be set as ProfilerState.RECORD_AND_RETURN.
        repeat(int, optional): The number of cycles to repeat above state transform. Default value is 0, which means it will repeat this cycle until profiler exits.
        skip_first(int, optional): The number of first steps to drop, not participate in the state transform, and at ProfilerState.CLOSED state. Default value is 0.
C
chenjian 已提交
93 94

    Returns:
C
chenjian 已提交
95
        A scheduler function, conforms to above state transform setting. The function will takes one parameter step_num, and returns corresponding ProfilerState.
C
chenjian 已提交
96 97 98

    Examples:
        1. profiling range [2, 5]
C
chenjian 已提交
99

C
chenjian 已提交
100
        Assume batch 0: closed, batch 1: ready, batch [2, 5] record
C
chenjian 已提交
101 102

            .. code-block:: python
C
chenjian 已提交
103
                :name: code-example1
C
chenjian 已提交
104 105 106 107 108

                import paddle.profiler as profiler
                profiler.make_scheduler(closed=1, ready=1, record=4, repeat=1)


C
chenjian 已提交
109
        2. profiling range [3,6], [9,12], [15,18]...
C
chenjian 已提交
110

C
chenjian 已提交
111
        Assume batch 0: skiped, batch 1: closed, batch 2: ready, batch [3,6]: record, repeat
C
chenjian 已提交
112 113

            .. code-block:: python
C
chenjian 已提交
114
                :name: code-example2
C
chenjian 已提交
115 116 117

                import paddle.profiler as profiler
                profiler.make_scheduler(closed=1, ready=1, record=4, skip_first=1)
C
chenjian 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    """

    def getScheduleState(step: int) -> ProfilerState:
        assert step >= 0
        if step < skip_first:  # within skip_first, just skip
            return ProfilerState.CLOSED
        step = step - skip_first
        period_steps = closed + ready + record
        has_repeated = step // period_steps
        if repeat > 0 and has_repeated >= repeat:  # the period has repeated repeat times, return CLOSED state
            return ProfilerState.CLOSED
        mod_step = step % period_steps
        if mod_step < closed:
            return ProfilerState.CLOSED
        elif mod_step >= closed and mod_step < closed + ready:
            return ProfilerState.READY
        else:
            if mod_step < period_steps - 1:
                return ProfilerState.RECORD
            else:
                return ProfilerState.RECORD_AND_RETURN
    assert closed >= 0 and ready >= 0 and record > 0 and \
             repeat >= 0 and skip_first >= 0, "Invalid profiler scheduler arguments"
    if ready == 0:
        warn("Profiler will record data after enabling profiler immediately, \
          some data collected at the beginning of profiling may be 'noisy' because of overhead."
             )
    return getScheduleState


def _default_state_scheduler(step: int):
    r"""
    A default state scheduler, keep recording from the begining of the profiler until ending.
    """
    return ProfilerState.RECORD


def export_chrome_tracing(dir_name: str,
                          worker_name: Optional[str]=None) -> Callable:
    r"""
    Return a callable, used for outputing tracing data to chrome tracing format file.
C
chenjian 已提交
159
    The output file will be saved in directory ``dir_name``, and file name will be set as worker_name.
C
chenjian 已提交
160 161
    if worker_name is not set, the default name is [hostname]_[pid].

C
chenjian 已提交
162
    Args:
C
chenjian 已提交
163
        dir_name(str): Directory to save profiling data.
C
chenjian 已提交
164 165 166 167
        worker_name(str, optional): Prefix of the file name saved, default is [hostname]_[pid].
    
    Returns:
        A callable, which takes a Profiler object as parameter and calls its export method to save data to chrome tracing format file.
C
chenjian 已提交
168 169

    Examples:
C
chenjian 已提交
170 171
        The return value can be used as parameter ``on_trace_ready`` in :ref:`Profiler <api_paddle_profiler_Profiler>` .

C
chenjian 已提交
172
        .. code-block:: python
C
chenjian 已提交
173
            :name: code-example1
C
chenjian 已提交
174 175 176 177 178 179 180 181 182 183

            # required: gpu
            import paddle.profiler as profiler
            with profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 10),
                    on_trace_ready=profiler.export_protobuf('./log')) as p:
                for iter in range(10):
                    #train()
                    p.step()
C
chenjian 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    """
    if not os.path.exists(dir_name):
        try:
            os.makedirs(dir_name, exist_ok=True)
        except Exception:
            raise RuntimeError(
                "Can not create directory '{}' for saving profiling results.".
                format(dir_name))

    def handle_fn(prof):
        nonlocal worker_name
        if not worker_name:
            worker_name = "host_{}pid_{}".format(socket.gethostname(),
                                                 str(os.getpid()))
        now = datetime.datetime.now()
        filename = '{}_time_{}.paddle_trace.json'.format(
            worker_name, now.strftime('%Y_%m_%d_%H_%M_%S_%f'))
        prof.export(os.path.join(dir_name, filename), "json")

    return handle_fn


def export_protobuf(dir_name: str, worker_name: Optional[str]=None) -> Callable:
    r"""
    Return a callable, used for outputing tracing data to protobuf file.
C
chenjian 已提交
209
    The output file will be saved in directory ``dir_name``, and file name will be set as worker_name.
C
chenjian 已提交
210 211
    if worker_name is not set, the default name is [hostname]_[pid].

C
chenjian 已提交
212
    Args:
C
chenjian 已提交
213
        dir_name(str): Directory to save profiling data.
C
chenjian 已提交
214 215 216 217
        worker_name(str, optional): Prefix of the file name saved, default is [hostname]_[pid].

    Returns:
        A callable, which takes a Profiler object as parameter and calls its export method to save data to protobuf file.
C
chenjian 已提交
218 219

    Examples:
C
chenjian 已提交
220 221
        The return value can be used as parameter ``on_trace_ready`` in :ref:`Profiler <api_paddle_profiler_Profiler>` .

C
chenjian 已提交
222
        .. code-block:: python
C
chenjian 已提交
223
            :name: code-example1
C
chenjian 已提交
224 225 226 227 228 229 230 231 232 233

            # required: gpu
            import paddle.profiler as profiler
            with profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 10),
                    on_trace_ready = profiler.export_protobuf('./log')) as p:
                for iter in range(10):
                    #train()
                    p.step()
C
chenjian 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    """
    if not os.path.exists(dir_name):
        try:
            os.makedirs(dir_name, exist_ok=True)
        except Exception:
            raise RuntimeError(
                "Can not create directory '{}' for saving profiling results.".
                format(dir_name))

    def handle_fn(prof):
        nonlocal worker_name
        if not worker_name:
            worker_name = "host_{}pid_{}".format(socket.gethostname(),
                                                 str(os.getpid()))
        now = datetime.datetime.now()
        filename = '{}_time_{}.paddle_trace.pb'.format(
            worker_name, now.strftime('%Y_%m_%d_%H_%M_%S_%f'))
        prof.export(os.path.join(dir_name, filename), "pb")

    return handle_fn


def _get_supported_targets() -> Iterable[ProfilerTarget]:
    r"""
    Get the current supported profiler target in the system.
    """
C
chenjian 已提交
260
    if _Profiler.is_cupti_supported():
C
chenjian 已提交
261 262 263 264 265 266
        return [ProfilerTarget.CPU, ProfilerTarget.GPU]
    return [ProfilerTarget.CPU]


class Profiler:
    r"""
C
chenjian 已提交
267
    Profiler context manager, user interface to manage profiling process to start, stop, export profiling data and print summary table.
C
chenjian 已提交
268

C
chenjian 已提交
269 270 271 272
    Args:
        targets (list, optional): specify target devices to profile, and all existing and supported devices will be chosen by default. Currently supported values, :ref:`ProfilerTarget.CPU <api_paddle_profiler_ProfilerTarget>` and :ref:`ProfilerTarget.GPU <api_paddle_profiler_ProfilerTarget>` .
        scheduler (Callable|tuple, optional): If it is a callable object, it takes a step number as parameter and return the corresponding :ref:`ProfilerState <api_paddle_profiler_ProfilerState>`. This callable object can be generated by :ref:`make_scheduler <api_paddle_profiler_make_scheduler>` function.
            If not provided (None), the default scheduler will keep tracing until the profiler exits. If it is a tuple, it has two values start_batch and end_batch,
C
chenjian 已提交
273
            which means profiling range [start_batch, end_batch).
C
chenjian 已提交
274 275
        on_trace_ready (Callable, optional): Callable object, serves as callback function, and takes the Profiler object as parameter, which provides a way for users to do post-processing.
            This callable object will be called when ``scheduler`` returns ``ProfilerState.RECORD_AND_RETURN``. The default value is :ref:`export_chrome_tracing <api_paddle_profiler_export_chrome_tracing>` (./profiler_log/).
Z
Zhang Ting 已提交
276 277
        timer_only (bool, optional): If it is True, the cost of Dataloader and every step of the model will be count without profiling. Otherwise, the model will
            be timed and profiled. Default: False.
C
chenjian 已提交
278

C
chenjian 已提交
279
    Examples:
C
chenjian 已提交
280
        1. profiling range [2, 5).
C
chenjian 已提交
281 282

            .. code-block:: python
C
chenjian 已提交
283
                :name: code-example1
C
chenjian 已提交
284 285 286 287 288 289 290 291 292 293 294

                # required: gpu
                import paddle.profiler as profiler
                with profiler.Profiler(
                        targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                        scheduler = (2, 5),
                        on_trace_ready = profiler.export_chrome_tracing('./log')) as p:
                    for iter in range(10):
                        #train()
                        p.step()

C
chenjian 已提交
295
        2. profiling range [2,4], [7, 9], [11,13]
C
chenjian 已提交
296 297

            .. code-block:: python
C
chenjian 已提交
298
                :name: code-example2
C
chenjian 已提交
299 300 301 302 303 304 305 306 307 308 309

                # required: gpu
                import paddle.profiler as profiler
                with profiler.Profiler(
                        targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                        scheduler = profiler.make_scheduler(closed=1, ready=1, record=3, repeat=3),
                        on_trace_ready = profiler.export_chrome_tracing('./log')) as p:
                    for iter in range(10):
                        #train()
                        p.step()

C
chenjian 已提交
310
        3. Use profiler without context manager, and use default parameters
C
chenjian 已提交
311 312

            .. code-block:: python
C
chenjian 已提交
313
                :name: code-example3
C
chenjian 已提交
314 315 316 317 318 319 320 321 322 323 324

                # required: gpu
                import paddle.profiler as profiler
                p = profiler.Profiler()
                p.start()
                for iter in range(10):
                    #train()
                    p.step()
                p.stop()
                p.summary()

Z
Zhang Ting 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
        4. Use profiler to get throughput and cost of the model

            .. code-block:: python
                :name: code-example-timer1

                import paddle
                import paddle.profiler as profiler
                
                class RandomDataset(paddle.io.Dataset):
                    def __init__(self, num_samples):
                        self.num_samples = num_samples
                
                    def __getitem__(self, idx):
                        image = paddle.rand(shape=[100], dtype='float32')
                        label = paddle.randint(0, 10, shape=[1], dtype='int64')
                        return image, label
                
                    def __len__(self):
                        return self.num_samples
                
                class SimpleNet(paddle.nn.Layer):
                    def __init__(self):
                        super(SimpleNet, self).__init__()
                        self.fc = paddle.nn.Linear(100, 10)
                
                    def forward(self, image, label=None):
                        return self.fc(image)
                
                dataset = RandomDataset(20 * 4)
                simple_net = SimpleNet()
                opt = paddle.optimizer.SGD(learning_rate=1e-3,
                                           parameters=simple_net.parameters())
                BATCH_SIZE = 4
                loader = paddle.io.DataLoader(
                    dataset,
                    batch_size=BATCH_SIZE)
                p = profiler.Profiler(timer_only=True)
                p.start()
                for i, (image, label) in enumerate(loader()):
                    out = simple_net(image)
                    loss = paddle.nn.functional.cross_entropy(out, label)
                    avg_loss = paddle.mean(loss)
                    avg_loss.backward()
                    opt.minimize(avg_loss)
                    simple_net.clear_gradients()
                    p.step(num_samples=BATCH_SIZE)
                    if i % 10 == 0:
                        step_info = p.step_info(unit='images')
                        print("Iter {}: {}".format(i, step_info))
                        # The average statistics for 10 steps between the last and this call will be
                        # printed when the "step_info" is called at 10 iteration intervals.
                        # The values you get may be different from the following.
                        # Iter 0:  reader_cost: 0.51946 s batch_cost: 0.66077 s ips: 6.054 images/s
                        # Iter 10:  reader_cost: 0.00014 s batch_cost: 0.00441 s ips: 907.009 images/s
                p.stop()
                # The performance summary will be automatically printed when the "stop" is called.
                # Reader Ratio: 2.658%
                # Time Unit: s, IPS Unit: images/s
                # |                 |       avg       |       max       |       min       |
                # |   reader_cost   |     0.00011     |     0.00013     |     0.00007     |
                # |    batch_cost   |     0.00405     |     0.00434     |     0.00326     |
                # |       ips       |    1086.42904   |    1227.30604   |    959.92796    |
C
chenjian 已提交
387 388 389 390 391 392 393
    """

    def __init__(
            self,
            *,
            targets: Optional[Iterable[ProfilerTarget]]=None,
            scheduler: Union[Callable[[int], ProfilerState], tuple, None]=None,
Z
Zhang Ting 已提交
394 395
            on_trace_ready: Optional[Callable[..., Any]]=None,
            timer_only: Optional[bool]=False):
C
chenjian 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
        supported_targets = _get_supported_targets()
        if targets:
            self.targets = set(targets)
            for target in targets:
                if target not in supported_targets:
                    self.targets.remove(target)
                    warn("Profiling {} is not supported in current context.".
                         format(target))
        else:
            self.targets = supported_targets
        profileoption = ProfilerOptions()
        if ProfilerTarget.CPU in self.targets:
            profileoption.trace_switch |= 1
        if ProfilerTarget.GPU in self.targets:
            profileoption.trace_switch |= (1 << 1)
        wrap_optimizers()
        self.profiler = _Profiler.create(profileoption)
        if callable(scheduler):
            self.scheduler = scheduler
        elif isinstance(scheduler, (tuple, list)):
            assert len(scheduler) == 2 and scheduler[1] > scheduler[0]
            start_batch, end_batch = scheduler
            start_batch = max(start_batch, 0)
            if start_batch >= 1:
                self.scheduler = make_scheduler(
                    closed=max(start_batch - 1, 0),
                    ready=1,
                    record=(end_batch - start_batch),
                    repeat=1)
            else:
                self.scheduler = make_scheduler(
                    closed=0,
                    ready=0,
                    record=(end_batch - start_batch),
                    repeat=1)
        else:
            self.scheduler = _default_state_scheduler

        if on_trace_ready == None:
            self.on_trace_ready = export_chrome_tracing('./profiler_log/')
        else:
            self.on_trace_ready = on_trace_ready
        self.step_num = 0
        self.previous_state = ProfilerState.CLOSED
        self.current_state = self.scheduler(self.step_num)
        self.record_event = None
        self.profiler_result = None
Z
Zhang Ting 已提交
443
        self.timer_only = timer_only
C
chenjian 已提交
444 445 446 447 448 449 450 451 452 453 454

    def __enter__(self):
        self.start()
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.stop()

    def start(self):
        r'''
        Start profiler and enter the first profiler step(0).
C
chenjian 已提交
455 456 457 458
        State transformed from CLOSED to self.current_state and trigger corresponding action.

        Examples:
            .. code-block:: python
C
chenjian 已提交
459
                :name: code-example4
C
chenjian 已提交
460 461 462 463 464 465 466 467 468 469 470 471

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (1, 9),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
Z
Zhang Ting 已提交
472

C
chenjian 已提交
473
        '''
Z
Zhang Ting 已提交
474 475 476 477
        # Timing only without profiling
        benchmark().begin()
        if self.timer_only:
            return
C
chenjian 已提交
478
        # CLOSED -> self.current_state
479
        utils._is_profiler_used = True
C
chenjian 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
        if self.current_state == ProfilerState.READY:
            self.profiler.prepare()
        elif self.current_state == ProfilerState.RECORD:
            self.profiler.prepare()
            self.profiler.start()
        elif self.current_state == ProfilerState.RECORD_AND_RETURN:
            self.profiler.prepare()
            self.profiler.start()
        self.record_event = RecordEvent(
            name="ProfileStep#{}".format(self.step_num),
            event_type=TracerEventType.ProfileStep)
        self.record_event.begin()

    def stop(self):
        r'''
        Stop profiler and State transformed from self.current_state to CLOSED.
        Trigger corresponding action and post-process profiler result using self.on_trace_ready if result exists.
C
chenjian 已提交
497 498 499

        Examples:
            .. code-block:: python
C
chenjian 已提交
500
                :name: code-example5
C
chenjian 已提交
501 502 503 504 505 506 507 508 509 510 511 512

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (1, 7),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
C
chenjian 已提交
513
        '''
Z
Zhang Ting 已提交
514 515 516
        benchmark().end()
        if self.timer_only:
            return
C
chenjian 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
        # self.current_state -> CLOSED
        # In this situation, RECORD state is regarded as RECORD_AND_RETURN
        if self.record_event:
            self.record_event.end()
            self.record_event = None
        if self.current_state == ProfilerState.READY:
            warn(
                "Inproper Profiler state transform: READY->CLOSED, profiler will start and stop without saving data"
            )
            self.profiler.start()
            self.profiler.stop()
        if self.current_state == ProfilerState.RECORD or self.current_state == ProfilerState.RECORD_AND_RETURN:
            self.profiler_result = self.profiler.stop()
            if self.on_trace_ready:
                self.on_trace_ready(self)
532
        utils._is_profiler_used = False
C
chenjian 已提交
533

Z
Zhang Ting 已提交
534
    def step(self, num_samples: Optional[int]=None):
C
chenjian 已提交
535 536 537
        r"""
        Signals the profiler that the next profiling step has started.
        Get the new ProfilerState and trigger corresponding action.
C
chenjian 已提交
538

Z
Zhang Ting 已提交
539 540 541 542
        Args:
            num_samples (int|None, optional): Specifies the batch size of every step of the model
                that is used to compute throughput when timer_only is True. Default: None.

C
chenjian 已提交
543 544
        Examples:
            .. code-block:: python
C
chenjian 已提交
545
                :name: code-example6
C
chenjian 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 7),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))

                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
C
chenjian 已提交
559
        """
Z
Zhang Ting 已提交
560 561 562
        benchmark().step(num_samples)
        if self.timer_only:
            return
C
chenjian 已提交
563 564 565 566 567 568 569 570 571 572 573 574
        if self.record_event:
            self.record_event.end()
            self.record_event = None
        self.previous_state = self.current_state
        self.step_num += 1
        self.current_state = self.scheduler(self.step_num)
        self._trigger_action()
        self.record_event = RecordEvent(
            name="ProfileStep#{}".format(self.step_num),
            event_type=TracerEventType.ProfileStep)
        self.record_event.begin()

Z
Zhang Ting 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
    def step_info(self, unit=None):
        r"""
        Get statistics for current step. If the function is called at certain iteration
        intervals, the result is the average of all steps between the previous call and
        this call. Statistics are as follows:

        1. reader_cost: the cost of loading data measured in seconds.

        2. batch_cost: the cost of step measured in seconds.

        3. ips(Instance Per Second): the throughput of the model measured in `samples/s`
        or others depends on the `unit`. When `num_samples` of `step()` is None, it is
        measured in `steps/s`.

        Args:
            unit (string, optional): The unit of input data is only used When `num_samples`
                of `step()` is specified as a number. For example, when it is `images`, the unit
                of throughput is `images/s`. Default: None, the unit of throughput is `samples/s`.

        Returns:
            string: A string representing the statistic.

        Examples:
            .. code-block:: python
                :name: code-example-timer2

                import paddle.profiler as profiler
                prof = profiler.Profiler(timer_only=True)
                prof.start()
                for iter in range(20):
                    #train()
                    prof.step()
                    if iter % 10 == 0:
                        print("Iter {}: {}".format(iter, prof.step_info()))
                        # The example does not call the DataLoader, so there is no "reader_cost".
                        # Iter 0:  batch_cost: 0.00001 s ips: 86216.623 steps/s
                        # Iter 10:  batch_cost: 0.00001 s ips: 103645.034 steps/s
                prof.stop()
                # Time Unit: s, IPS Unit: steps/s
                # |                 |       avg       |       max       |       min       |
                # |    batch_cost   |     0.00000     |     0.00002     |     0.00000     |
                # |       ips       |   267846.19437  |   712030.38727  |   45134.16662   |
        """
        if unit is None:
            unit = 'samples'
        return benchmark().step_info(unit)

C
chenjian 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
    def _trigger_action(self):
        if self.previous_state == ProfilerState.CLOSED:
            if self.current_state == ProfilerState.READY:  # CLOSED -> READY
                self.profiler.prepare()
            if self.current_state == ProfilerState.RECORD:  # CLOSED -> RECORD
                self.profiler.prepare()
                self.profiler.start()
            if self.current_state == ProfilerState.RECORD_AND_RETURN:  # CLOSED -> RECORD_AND_RETURN
                self.profiler.prepare()
                self.profiler.start()

        elif self.previous_state == ProfilerState.READY:
            if self.current_state == ProfilerState.CLOSED:  # READY -> CLOSED
                warn(
                    "Improper schedule: READY->CLOSED, profiler will start and stop without saving data"
                )
                self.profiler.start()
                self.profiler.stop()
            if self.current_state == ProfilerState.RECORD:  # READY -> RECORD
                self.profiler.start()
            if self.current_state == ProfilerState.RECORD_AND_RETURN:  # READY -> RECORD_AND_RETURN
                self.profiler.start()

        elif self.previous_state == ProfilerState.RECORD:
            if self.current_state == ProfilerState.CLOSED:  # RECORD -> CLOSED
                warn(
                    "Improper schedule: RECORD->CLOSED, profiler will not saving data"
                )
                self.profiler.stop()

            if self.current_state == ProfilerState.READY:  # RECORD -> READY
                warn(
                    "Improper schedule: RECORD->READY, profiler will stop and re-prepare"
                )
                self.profiler.stop()
                self.profiler.prepare()
            if self.current_state == ProfilerState.RECORD_AND_RETURN:  # RECORD -> RECORD_AND_RETURN
                pass

        else:
            assert self.previous_state == ProfilerState.RECORD_AND_RETURN
            if self.current_state == ProfilerState.CLOSED:  # RECORD_AND_RETURN -> CLOSED
                self.profiler_result = self.profiler.stop()
            if self.current_state == ProfilerState.READY:  # RECORD_AND_RETURN -> READY
                self.profiler_result = self.profiler.stop()
                self.profiler.prepare()
            if self.current_state == ProfilerState.RECORD:  # RECORD_AND_RETURN -> RECORD
                self.profiler_result = self.profiler.stop()
                self.profiler.prepare()
                self.profiler.start()
            if self.current_state == ProfilerState.RECORD_AND_RETURN:  # RECORD_AND_RETURN -> RECORD_AND_RETURN
                self.profiler_result = self.profiler.stop()
                self.profiler.prepare()
                self.profiler.start()
            if self.on_trace_ready:
                self.on_trace_ready(self)

    def export(self, path="", format="json"):
        r"""
C
chenjian 已提交
681 682 683 684 685 686
        Exports the tracing data to file.

        Args:
            path(str): file path of the output.
            format(str, optional): output format, can be chosen from ['json', 'pb], 'json' for chrome tracing and 'pb' for protobuf, default value is "json".

C
chenjian 已提交
687 688 689

        Examples:
            .. code-block:: python
C
chenjian 已提交
690
                :name: code-example7
C
chenjian 已提交
691 692 693 694 695 696 697 698 699 700 701 702

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 7))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
                prof.export(path="./profiler_data.json", format="json")
C
chenjian 已提交
703 704 705 706 707 708 709 710 711 712
        """
        if self.profiler_result:
            self.profiler_result.save(path, format)

    def summary(self,
                sorted_by=SortedKeys.CPUTotal,
                op_detail=True,
                thread_sep=False,
                time_unit='ms'):
        r"""
C
chenjian 已提交
713
        Print the Summary table. Currently support overview, model, distributed, operator, memory manipulation and userdefined summary.
C
chenjian 已提交
714

C
chenjian 已提交
715 716 717 718 719
        Args:
            sorted_by( :ref:`SortedKeys <api_paddle_profiler_SortedKeys>` , optional): how to rank the op table items, default value is SortedKeys.CPUTotal.
            op_detail(bool, optional): expand each operator detail information, default value is True.
            thread_sep(bool, optional): print op table each thread, default value is False.
            time_unit(str, optional): time unit for display, can be chosen form ['s', 'ms', 'us', 'ns'], default value is 'ms'.
C
chenjian 已提交
720 721 722

        Examples:
            .. code-block:: python
C
chenjian 已提交
723
                :name: code-example8
C
chenjian 已提交
724 725 726 727 728 729 730 731 732 733 734 735 736

                # required: gpu
                import paddle.profiler as profiler
                prof = profiler.Profiler(
                    targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
                    scheduler = (3, 7),
                    on_trace_ready = profiler.export_chrome_tracing('./log'))
                prof.start()
                for iter in range(10):
                    #train()
                    prof.step()
                prof.stop()
                prof.summary(sorted_by=profiler.SortedKeys.CPUTotal, op_detail=True, thread_sep=False, time_unit='ms')
C
chenjian 已提交
737
        """
C
chenjian 已提交
738 739 740 741 742 743 744 745 746 747 748
        if self.profiler_result:
            statistic_data = StatisticData(
                self.profiler_result.get_data(),
                self.profiler_result.get_extra_info())
            print(
                _build_table(
                    statistic_data,
                    sorted_by=sorted_by,
                    op_detail=op_detail,
                    thread_sep=thread_sep,
                    time_unit=time_unit))
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818


def get_profiler(config_path):
    try:
        with open(config_path, 'r') as filehandle:
            config_dict = json.load(filehandle)
    except Exception as e:
        print('Load config file for profiler error: {}'.format(e))
        print('Use default parameters instead.')
        return Profiler()
    translated_config_dict = {}
    if "targets" in config_dict:
        try:
            translated_config_dict['targets'] = []
            for target in config_dict['targets']:
                if target.lower() == "cpu":
                    translated_config_dict['targets'].append(ProfilerTarget.CPU)
                elif target.lower() == 'gpu':
                    translated_config_dict['targets'].append(ProfilerTarget.GPU)
        except:
            print('Set targets parameter error, use default parameter instead.')
            translated_config_dict['targets'] = None
    if "scheduler" in config_dict:
        try:
            if isinstance(config_dict['scheduler'], dict):
                for key, value in config_dict['scheduler'].items():
                    module_path = value['module']
                    use_direct = value['use_direct']
                    module = importlib.import_module(module_path)
                    method = getattr(module, key)
                    if not use_direct:
                        translated_config_dict['scheduler'] = method(
                            *value['args'], **value['kwargs'])
                    else:
                        translated_config_dict['scheduler'] = method
            else:
                translated_config_dict['scheduler'] = [
                    config_dict['scheduler'][0], config_dict['scheduler'][1]
                ]

        except:
            print(
                'Set scheduler parameter error, use default parameter instead.')
            translated_config_dict['scheduler'] = None
    if "on_trace_ready" in config_dict:
        try:
            if isinstance(config_dict['on_trace_ready'], dict):
                for key, value in config_dict['on_trace_ready'].items():
                    module_path = value['module']
                    use_direct = value['use_direct']
                    module = importlib.import_module(module_path)
                    method = getattr(module, key)
                    if not use_direct:
                        translated_config_dict['on_trace_ready'] = method(
                            *value['args'], **value['kwargs'])
                    else:
                        translated_config_dict['on_trace_ready'] = method
        except:
            print(
                'Set on_trace_ready parameter error, use default parameter instead.'
            )
            translated_config_dict['on_trace_ready'] = None
    if "timer_only" in config_dict:
        if isinstance(config_dict['timer_only'], bool):
            translated_config_dict['timer_only'] = config_dict['timer_only']
        else:
            print(
                'Set timer_only parameter error, use default parameter instead.')

    return Profiler(**translated_config_dict)