functional.py 23.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import typing

import paddle
from paddle.fluid import framework
from paddle.incubate.autograd import primapi, utils


def vjp(func, xs, v=None):
    r"""Computes the Vector-Jacobian product, a functional form of
    reverse mode automatic differentiation.

    Warning:
        This API is in beta, the signatures could be changed in future version.

    Args:
        func(Callable): A function that takes ``xs`` as inputs parameter and
            returns a sequence of Tensors or a Tensor.
        xs(Tensor|Sequence[Tensor]): Used as positional arguments to evaluate
            ``func``. ``xs`` is accepted as one Tensor or a sequence of Tensors.
        v(Tensor|Sequence[Tensor]|None, optional): The cotangent vector invovled
            in the VJP computation. ``v`` matches the size and shape of
            ``func`` 's output. Defaults to None, which is equivalent to all
            ones the same size of ``func`` 's output.

    Returns:
        output(tuple):
41

42 43 44 45 46 47 48
            - func_out(Tensor|tuple[Tensor]): The output of ``func(xs)`` .
            - vjp(Tensor|tuple[Tensor]): The vjp result.

    Examples:

        .. code-block:: python

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
            >>> import paddle

            >>> def func(x):
            ...     return paddle.matmul(x, x)
            ...
            >>> x = paddle.ones(shape=[2, 2], dtype='float32')
            >>> _, vjp_result = paddle.incubate.autograd.vjp(func, x)
            >>> print(vjp_result)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=False,
                   [[4., 4.],
                    [4., 4.]])

            >>> v = paddle.to_tensor([[1.0, 0.0], [0.0, 0.0]])
            >>> _, vjp_result = paddle.incubate.autograd.vjp(func, x, v)
            >>> print(vjp_result)
            Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=False,
                   [[2., 1.],
                    [1., 0.]])
67 68 69 70 71
    """
    _check_inputs(func, xs, v)

    # ``_seprate`` breaks the dependencies between ``xs`` and other
    # variables. See more ``_seprate`` .
72
    if framework.in_dygraph_mode() or not utils.prim_enabled():
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
        xs, v = _separate(xs), _separate(v)
    ys = func(*xs) if isinstance(xs, typing.Sequence) else func(xs)
    _check_v_shape(v, ys)

    return ys, _grad(ys, xs, v)


def jvp(func, xs, v=None):
    r"""
    Computes the Jacobian-Vector product for a function at the given
    inputs and a vector in the tangent space induced by the inputs.

    Warning:
        This API is in beta, the signatures could be changed in future version.

    Args:
        func(Callable): The ``func`` takes as input a Tensor or a Sequence
            of Tensors and returns a Tensor or a Sequence of Tensors.
        xs(Tensor|Sequence[Tensor]): Used as positional arguments to
            evaluate ``func``.  The ``xs`` is accepted as one Tensor or a
            Sequence of Tensors.
        v(Tensor|Sequence[Tensor]|None, Optional): The tangent vector invovled
            in the JVP computation. The ``v`` matches the size and shape of
96
            ``xs`` . Default value is None and in this case is equivalent to
97 98 99 100 101 102 103 104 105 106 107 108
            all ones the same size of ``xs`` .

    Returns:
        output(tuple):

            - func_out(Tensor|tuple[Tensor]): The output of ``func(xs)`` .
            - jvp(Tensor|tuple[Tensor]): The jvp result.

    Examples:

        .. code-block:: python

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
            >>> import paddle

            >>> def func(x):
            ...     return paddle.matmul(x, x)
            ...
            >>> x = paddle.ones(shape=[2, 2], dtype='float32')
            >>> _, jvp_result = paddle.incubate.autograd.jvp(func, x)
            >>> print(jvp_result)
            Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=False,
                   [[4., 4.],
                    [4., 4.]])

            >>> v = paddle.to_tensor([[1.0, 0.0], [0.0, 0.0]])
            >>> _, jvp_result = paddle.incubate.autograd.jvp(func, x, v)
            >>> print(jvp_result)
            Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=False,
                   [[2., 1.],
                    [1., 0.]])
127 128 129 130 131

    """
    _check_inputs(func, xs, v)
    # ``_seprate`` breaks the dependencies between ``xs`` and other
    # variables. See more ``_seprate`` .
132
    if framework.in_dygraph_mode() or not utils.prim_enabled():
133 134 135 136
        xs, v = _separate(xs), _separate(v)
    ys = func(*xs) if isinstance(xs, typing.Sequence) else func(xs)
    _check_v_shape(v, xs)

137
    if not framework.in_dygraph_mode() and utils.prim_enabled():
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
        return ys, primapi.forward_grad(ys, xs, v)
    else:
        return ys, _double_backward_trick(ys, xs, v)


def _double_backward_trick(ys, xs, v):
    """Double backward trick for computing ``jvp`` by ``vjp``
    see details: https://j-towns.github.io/2017/06/12/A-new-trick.html
    """
    # The value of ys_grad is not important, it can be any random value in
    # theory, but it's required to set stop_gradient=False.
    ys_grad = _zeros_like_with_grad(ys)
    xs_grad = _grad(ys, xs, ys_grad)
    return _grad(xs_grad, ys_grad, v)


def _zeros_like_with_grad(xs):
155
    """Create a zero or zeros sequence Tensor like ``xs`` with a flag
156 157 158 159 160 161 162 163 164 165 166 167 168 169
    ``stop_graident=False`` .
    """
    if not isinstance(xs, typing.Sequence):
        ys = paddle.zeros_like(xs)
        ys.stop_gradient = False
    else:
        ys = []
        for x in xs:
            y = paddle.zeros_like(x)
            y.stop_gradient = False
            ys.append(y)
    return ys


170
class Jacobian:
171 172 173
    r"""
    Computes the Jacobian matrix of a given function.

174 175 176
    If the function has multiple inputs and multiple outputs, during internal
    implementation, all input tensors are concatenated after being flatten,
    the batch dimension is retained, and the output is subject to the same
177 178
    processing rules.

179 180 181
    Once the Jacobian ``J`` is constructed, you can use a multidimensional index
    to retrieve the submatrix of ``J``, as same as slicing a Tensor. The
    submatrix is lazily evaluated along row axis, and will be cached once
182 183
    evaluated.

184
    For examples, supposing ``is_batched=True``, you can retrieve the submatrix
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    by following methods:

        * J[:], retrieving the full matrix.
        * J[:, :, j], retrieving the partial derivatives w.r.t. the j'th input
          variable.
        * J[:, i, :], retrieving the partial derivatives w.r.t. the i'th output
          variable.
        * J[:, i, j], retrieving the partial derivatives w.r.t. the i'th output
          variable and the j'th input variable.

    Notes:

        Eclipsis index is not supported currently.

    Warning:
        This API is in beta, the signatures could be changed in future version.

    Args:

204
        func (Callable): A python function that takes a Tensor or a sequence of
205 206 207
            Tensors as inputs(the first dimension is batch size) and
            returns a Tensor  a sequence of Tensors.
        xs (Tensor|Sequence[Tensor]): The input to the function ``func`` .
208
        is_batched (bool): If true, the first axis is batch axis. Defaults to
209 210 211 212 213 214 215 216 217 218
            False.

    Returns:

        Jacobian (Object): A python object retains the Jacobian matrix.

    Examples:

        .. code-block:: python

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
            >>> import paddle

            >>> def func(x, y):
            ...     return paddle.matmul(x, y)
            ...
            >>> x = paddle.to_tensor([[1., 2.], [3., 4.]])
            >>> J = paddle.incubate.autograd.Jacobian(func, [x, x])
            >>> print(J[:, :])
            Tensor(shape=[4, 8], dtype=float32, place=Place(cpu), stop_gradient=False,
                   [[1., 3., 0., 0., 1., 0., 2., 0.],
                    [2., 4., 0., 0., 0., 1., 0., 2.],
                    [0., 0., 1., 3., 3., 0., 4., 0.],
                    [0., 0., 2., 4., 0., 3., 0., 4.]])

            >>> print(J[0, :])
            Tensor(shape=[8], dtype=float32, place=Place(cpu), stop_gradient=False,
                   [1., 3., 0., 0., 1., 0., 2., 0.])
            >>> print(J[:, 0])
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=False,
                   [1., 2., 0., 0.])
239 240 241 242 243 244 245 246 247 248 249 250 251 252

    """

    def __init__(self, func, xs, is_batched=False):
        if not is_batched:
            self._jacobian = _JacobianNoBatch(func, xs)
        else:
            self._jacobian = _JacobianBatchFirst(func, xs)

    def __getitem__(self, indexes):
        return self._jacobian[indexes]

    @property
    def shape(self):
253
        """The shape of flattened Jacobian matrix."""
254 255 256
        return self._jacobian.shape


257
class Hessian:
258 259 260
    """
    Computes the Hessian matrix  with a given ``func`` with respect to ``xs`` .

261 262
    If the function has multiple inputs, during internal implementation,
    all input tensors are concatenated after being flatten, the batch dimension
263 264
    is retained.

265
    The Hessian submatrix is lazily evaluated, and can be retrieved with a
266 267 268 269 270 271 272
    multidimensional indexes. See details ``Jacobian`` .

    Warning:
        This API is in beta, the signatures could be changed in future version.

    Args:
        func (Callable): A python function that takes a Tensor or a Tensor
273
            sequence as inputs and returns a Tensor with shape
274
            ``[batch_size, 1]`` with batch or ``[1]`` without batch.
275
        xs (Tensor|Sequence(Tensor)): The input Tensor or Tensor sequence of
276
            the function ``func``.
277
        is_batched (bool): If true, the first axis is batch axis. Defaults to
278 279 280 281 282 283 284 285 286
            False.

    Returns:

        Hessian (Object): A python object retains the Hessian matrix.


    Examples:

287
        .. code-block:: python
288

289
            >>> import paddle
290

291 292 293 294 295 296 297 298 299 300 301
            >>> def reducer(x):
            ...     return paddle.sum(x * x)
            ...
            >>> x = paddle.rand([2, 2])
            >>> h = paddle.incubate.autograd.Hessian(reducer, x)
            >>> print(h[:])
            Tensor(shape=[4, 4], dtype=float32, place=CPUPlace(), stop_gradient=False,
                [[2., 0., 0., 0.],
                 [0., 2., 0., 0.],
                 [0., 0., 2., 0.],
                 [0., 0., 0., 2.]])
302 303 304 305 306 307

    """

    def __init__(self, func, xs, is_batched=False):
        def _jac_func(*xs):
            jac = Jacobian(func, xs, is_batched=is_batched)
308 309 310
            if (is_batched and jac.shape[1] != 1) or (
                not is_batched and jac.shape[0] != 1
            ):
311 312 313 314 315 316 317 318 319 320 321 322
                raise RuntimeError(
                    "The function given to Hessian shoud return as single element Tensor or batched single element Tensor."
                )
            return jac[:, 0, :] if is_batched else jac[0, :]

        self.symbolic = Jacobian(_jac_func, xs, is_batched=is_batched)

    def __getitem__(self, indexes):
        return self.symbolic[indexes]

    @property
    def shape(self):
323
        """The shape of flattened Hessian matrix."""
324 325 326
        return self.symbolic.shape


327
class _Jacobian:
328 329
    """The base class for computing Jacobian matrix.

330 331
    ``_Jacobian`` implementes the core logic of multidimensional index and lazy
    evaluation for Jacobian matrix, subclass only need to overwrite following
332 333
    methods:

334
        * ``_lazy_axis()``,  return the axis along which will be lazy
335 336 337 338 339 340
            evaluating.
        * ``_flatten(xs)``, flattens the inputs ``xs``.
        * ``_evaluate(index)``, evaluates one slice along ``_lazy_axis`` .

    Notes:

341 342 343
        Because currently PaddlePaddle only support reverse differentiation by
        ``paddle.grad``, so lazy evaluation is only supported along the row of
        Jacobian matrix, which means that slicing along row will get better
344 345 346 347 348 349 350
        performance.

    """

    def __init__(self, func, xs):
        # Skip separating in prim mode temporarily, as detach and clone are not
        # primitive operators.
351
        if not framework.in_dygraph_mode() and utils.prim_enabled():
352 353 354 355 356 357 358 359 360 361 362 363 364 365
            self._xs = xs
        else:
            self._xs = _separate(xs)
        self._ys = func(*utils.as_tensors(self._xs))
        self._flatten_xs = self._flatten(utils.as_tensors(self._xs))
        self._flatten_ys = self._flatten(utils.as_tensors(self._ys))
        self._cache = {}

    @property
    def shape(self):
        raise NotImplementedError

    @property
    def _lazy_axis(self):
366
        """ "The axis of lazily evaluated."""
367 368 369 370
        raise NotImplementedError

    def _lazy_indexes(self, indexes):
        idx = indexes[self._lazy_axis]
371 372 373 374 375
        return (
            (idx,)
            if isinstance(idx, int)
            else tuple(range(idx.start, idx.stop, idx.step))
        )
376 377 378 379 380 381

    def _flatten(self, xs):
        raise NotImplementedError

    def _shifted_indexes(self, indexes, lazy_axis_size=0):
        idx = indexes[self._lazy_axis]
382 383 384 385 386 387 388 389
        shifted_lazy_axis_idx = (
            0 if isinstance(idx, int) else slice(0, lazy_axis_size, 1)
        )
        return (
            indexes[: self._lazy_axis]
            + (shifted_lazy_axis_idx,)
            + indexes[self._lazy_axis + 1 :]
        )
390 391 392 393 394

    def __getitem__(self, indexes):
        indexes = _multi_index(indexes, self.shape)

        if isinstance(indexes[self._lazy_axis], int):
395 396 397 398 399 400
            other_indexes = (
                indexes[: self._lazy_axis] + indexes[self._lazy_axis + 1 :]
            )
            return self._cached_evaluate(indexes[self._lazy_axis])[
                other_indexes
            ]
401 402 403 404 405 406 407
        lazy_indexes = self._lazy_indexes(indexes)
        # Using concat and reshape to replace stack operator temporarily, as
        # it is not a primitive operator.
        shape = list(self.shape)
        shape[self._lazy_axis] = len(lazy_indexes)
        part_jac = paddle.concat(
            [self._cached_evaluate(i) for i in lazy_indexes],
408 409
            axis=self._lazy_axis,
        ).reshape(shape)
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
        return part_jac[self._shifted_indexes(indexes, len(lazy_indexes))]

    def _cached_evaluate(self, k):
        v = self._cache.get(k)
        if v is None:
            v = self._evaluate(k)
            self._cache[k] = v
        return v

    def _evaluate(self, index):
        """Evaluate one slice at along lazy axis."""
        raise NotImplementedError


class _JacobianNoBatch(_Jacobian):
    """Compute Jacobian matrix without batch dimension.
426
    Suppose the mapping is :math:`f: R^M \to R^N`, the output shape is
427 428 429 430
    ``(N, M)`` .
    """

    def __init__(self, func, xs):
431
        super().__init__(func, xs)
432 433 434 435 436 437 438 439 440 441

    @property
    def shape(self):
        return (self._flatten_ys.shape[0], self._flatten_xs.shape[0])

    @property
    def _lazy_axis(self):
        return 0

    def _flatten(self, xs):
442
        return paddle.concat(tuple(x.reshape((-1,)) for x in xs))
443 444

    def _evaluate(self, row_index):
445 446 447 448 449 450
        return self._flatten(
            _grad(
                self._flatten_ys[row_index],
                self._xs,
            )
        )
451 452 453 454


class _JacobianBatchFirst(_Jacobian):
    """Compute Jacobian matrix with batch at first axis.
455
    Suppose the mapping is :math:`f: R^{B,M} \to R^{B,N}`, the output shape is
456 457 458 459
    ``(B, N, M)`` .
    """

    def __init__(self, func, xs):
460
        super().__init__(func, xs)
461 462 463

    @property
    def shape(self):
464 465 466 467 468
        return (
            self._flatten_xs.shape[0],
            self._flatten_ys.shape[1],
            self._flatten_xs.shape[1],
        )
469 470 471 472 473 474 475

    @property
    def _lazy_axis(self):
        return 1

    def _flatten(self, xs):
        return paddle.concat(
476 477
            tuple(x.reshape((x.shape[0], -1)) for x in utils.as_tensors(xs)), 1
        )
478 479 480 481 482 483 484 485 486

    def _evaluate(self, row_index):
        return self._flatten(_grad(self._flatten_ys[:, row_index], self._xs))


def _multi_index(indexes, shape):
    """A tool for parsing N-dimensional index into a standard format.

    Currently supporting following input format:
487
        * ([positive|negative|slice], ...), the right-most elements can be
488 489 490 491 492
            omited.

    The standard format after converted is slice tuple which contains N elements:
        * ([positive|slice], ..., [positive|slice])

493
    Notes:
494 495 496 497 498 499 500 501 502
        Ellipsis indexes such as ``(..., i), (i, ...)`` is not supported.

    Args:
        indexes (tuple): The input indexes.
        shape (tuple): The input shape.

    Returns:
        tuple: The standard format index as the above description.
    """
503
    indexes = indexes if isinstance(indexes, typing.Sequence) else (indexes,)
504 505 506
    if any(isinstance(i, type(Ellipsis)) for i in indexes):
        raise IndexError('Ellipsis index currently is not supported.')
    # Fill the right-most elements.
507
    indexes = indexes + (slice(0, None, None),) * (len(shape) - len(indexes))
508 509 510 511
    # Convert to positive index.
    positive_indexes = []
    for i, index in enumerate(indexes):
        if isinstance(index, slice):
512 513 514
            index = slice(
                index.start or 0, index.stop or shape[i], index.step or 1
            )
515 516 517 518 519 520
            positive_indexes.append(
                slice(
                    index.start + shape[i] if index.start < 0 else index.start,
                    index.stop + shape[i] if index.stop < 0 else index.stop,
                    # Negative step means index backward, no need to convert to
                    # positive interger.
521 522 523
                    index.step,
                )
            )
524 525 526 527 528 529 530 531 532 533 534 535 536 537
        elif isinstance(index, int):
            positive_indexes.append(index + shape[i] if index < 0 else index)
        else:
            raise TypeError(f'Not supported index type {index}.')
    return tuple(positive_indexes)


def _replace_none_with_zero_tensor(xs, refs):
    if xs is None:
        xs = paddle.zeros_like(refs)
        xs.stop_gradient = refs.stop_gradient
        return xs
    elif isinstance(xs, typing.Sequence):
        return tuple(
538 539
            _replace_none_with_zero_tensor(x, refs[i]) for i, x in enumerate(xs)
        )
540 541 542 543 544 545 546 547 548 549 550 551 552 553
    else:
        return xs


def _grad(ys, xs, v=None):
    """A gradient function that can be used in dynamic graph and static graph.

    The ``grad`` combines ``paddle.grad`` used in dynamic graph and
    ``paddle.static.gradients`` used in static graph, and do following changes:

    * The ``allow_unused`` flag is removed and set defaults to true internally,
        none in outputs will be replaced by zero tensor.
    * The ``create_graph`` flag is removed and set defaults to true internally,
        only makes sense in dynamic graph.
554 555
    * When xs is a single Tensor, ``paddle.grad`` returns a list which only
        contains one Tensor. It may confuse users, thus in this case we improve
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
        to return a single Tensor in _grad interface.

    Args:
        ys (Tensor|Sequence[Tensor]): The output tensor or tensor sequence of
            the graph to compute gradients.
        xs (Tensor|Sequence[Tensor]): The input tensor or tensor sequence of the graph to
            compute gradients. The returned values of this API are the
            gradients of inputs .
        v (Tensor|Sequence[Tensor]|None,optional): The initial gradient values
            of outputs . If grad_outputs is None, the initial gradient values of
            outputs would be Tensors filled with 1; if grad_outputs is not None,
            it must have the same length as outputs , and in this case, the
            initial gradient value of the i-th outputs would be: (1) a Tensor
            filled with 1 when the i-th element of grad_outputs is None;
            (2) the i-th element of grad_outputs when the i-th element of
            grad_outputs is a Tensor. Default None.

    Returns:
574 575 576
        Tensor|tuple[Tensor]: Tensor or a tuple of Tensors, whose length is the
            same as the Tensor number inside inputs, and the i-th returned
            Tensor is the sum of gradients of outputs with respect to the i-th
577 578
            inputs.
    """
579
    if framework.in_dygraph_mode():
580 581 582
        # paddle.grad returns a list though the inputs is a signle Tensor. The
        # follow code snippet fixes the problem by return the first element of
        # xs_grad when the xs is a signle Tensor.
583
        xs_grad = paddle.grad(ys, xs, v, create_graph=True, allow_unused=True)
584 585 586 587 588
        if (
            isinstance(xs, paddle.fluid.framework.Variable)
            and isinstance(xs_grad, typing.Sequence)
            and len(xs_grad) > 0
        ):
589
            xs_grad = xs_grad[0]
590 591 592 593 594 595 596
    else:
        xs_grad = paddle.incubate.autograd.grad(ys, xs, v)
    return _replace_none_with_zero_tensor(xs_grad, xs)


def _separate(xs):
    """
597
    ``_separate`` separates ``xs`` from the computation graph through ``clone``
598 599
    or ``deteach`` .

600
    Interally, ``paddle.grad(xs, ys)`` is stateful API implemented based on
601 602
    computional graph, which will reduce gradients along all path from ys to xs.

603
    However, funcional autograd API such as ``vjp``, ``jvp`` is stateless, and
604 605 606 607
    only compute gradients with a given ``func`` .

    For example, given a ``func`` :math:`y0=f(x0)`, supposing forward path is:
    ``x0 -> y0``, ``x0 -> x1 -> y0`` .
608
    ``paddle.grad(y0, x0)`` will reduce gradients along ``y0->x0`` and
609 610
    ``y0->x1->x0``, and ``vjp`` only need reduce along ``y0->x0``.

611
    So, it's needed to clone or detach xs for breaking the dependencies with
612 613 614 615 616 617
    other variables.

    Examples:

        .. code-block:: python

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
            >>> import paddle
            >>> from paddle.incubate.autograd.functional import _separate

            >>> def func(x, y):
            ...     return x * y
            ...
            >>> x = paddle.ones((1,))
            >>> x.stop_gradient = False

            >>> y = func(x, x)
            >>> print(paddle.grad(y, x))
            [Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
                   [2.])]

            >>> x1, x2 = _separate((x, x))
            >>> y = func(x1, x2)
            >>> print(paddle.grad(y, x1))
            [Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
                   [1.])]
637 638 639 640 641 642 643 644 645 646 647 648

    """
    if isinstance(xs, typing.Sequence):
        return tuple(_single_separate(x) for x in xs)
    else:
        return _single_separate(xs)


def _single_separate(x):
    if x is None:  # x maybe none because grad input's v defaults to none.
        return x
    if not x.stop_gradient:
649
        return paddle.assign(x)
650 651 652 653 654 655 656 657 658 659 660 661
    else:  # use detach to share memory when no need gradients.
        x = x.detach()
        x.stop_gradient = False
        return x
    return x


def _check_inputs(func, xs, v=None):
    if not callable(func):
        raise TypeError(f"Expected 'fun' is Callable, but got {type(func)}.")

    if not isinstance(xs, (framework.Variable, typing.Sequence)):
662 663 664 665
        raise TypeError(
            f"Expected 'xs' is a Tensor|Sequence[Tensor],"
            f"but got {type(xs)}."
        )
666
    if isinstance(xs, typing.Sequence) and not all(
667 668
        isinstance(x, framework.Variable) for x in xs
    ):
669 670 671 672
        raise TypeError("All elements of 'xs' shoule be Tensor.")

    if not isinstance(v, (framework.Variable, typing.Sequence, type(None))):
        raise TypeError(
673 674
            f"Expected 'v' is Tensor|Sequence[Tensor]|None, but got {type(v)}."
        )
675 676

    if isinstance(v, typing.Sequence) and not all(
677 678
        isinstance(e, framework.Variable) for e in v
    ):
679 680 681 682 683 684 685 686 687
        raise TypeError("All elements of 'xs' shoule be Tensor.")


def _check_v_shape(v, refs):
    if v is None:
        return

    v, refs = utils.as_tensors(v), utils.as_tensors(refs)
    if len(refs) != len(v):
688 689 690 691
        raise RuntimeError(
            f"The argument v is a tuple of invalid length:"
            f"should be {len(refs)} but got {len(v)}."
        )
692 693 694 695 696

    for index, (element_v, element_ref) in enumerate(zip(v, refs)):
        if element_v.shape != element_ref.shape:
            raise RuntimeError(
                f"The v[{index}] has invalid shape: should "
697 698
                f"be {element_ref.shape} but got {element_v.shape}."
            )