data_balance_op_handle.cc 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/data_balance_op_handle.h"
#include <algorithm>
#include "paddle/fluid/framework/details/container_cast.h"

namespace paddle {
namespace framework {
namespace details {

DataBalanceOpHandle::DataBalanceOpHandle(
    const std::vector<Scope *> &local_scopes,
    const std::vector<platform::Place> &places)
    : local_scopes_(local_scopes), places_(places) {}

std::string DataBalanceOpHandle::Name() const { return "data balance"; }

std::vector<std::array<int, 3>> DataBalanceOpHandle::GetBalancePlan(
    const std::vector<int> &device_sizes) {
  int device_num = device_sizes.size();
  int total_size = 0;
  int empty_num = 0;
  std::vector<std::array<int, 2>> size_device_vec;
  size_device_vec.reserve(device_num);
  for (int i = 0; i < device_num; ++i) {
    if (device_sizes[i] == 0) {
      ++empty_num;
    }
    total_size += device_sizes[i];
    size_device_vec.push_back({{device_sizes[i], i}});
  }
  std::vector<std::array<int, 3>> res;
  if (empty_num == 0) {
    // No need to do data balance.
    return res;
  }
  if (total_size < device_num) {
    // No enough data.
    PADDLE_THROW("There is no next data.");
  }
  std::sort(size_device_vec.begin(), size_device_vec.end(),
            [](const std::array<int, 2> &a, const std::array<int, 2> &b) {
              return a[0] > b[0];
            });
  int expected_device_size = total_size / device_num;
  int src_idx = 0;
  for (int dst_idx = device_num - empty_num; dst_idx < device_num; ++dst_idx) {
    if (size_device_vec[src_idx][0] <= expected_device_size) {
      ++src_idx;
      PADDLE_ENFORCE_LT(src_idx, device_num - empty_num);
    }
    size_device_vec[src_idx][0] -= expected_device_size;
    size_device_vec[dst_idx][0] += expected_device_size;
    res.push_back({{size_device_vec[src_idx][1], size_device_vec[dst_idx][1],
                    expected_device_size}});
  }
  return res;
}

void DataBalanceOpHandle::RunImpl() {
  if (places_.size() == 1) {
    return;
  }
  auto in_var_handles = DynamicCast<VarHandle>(inputs_);
  auto out_var_handles = DynamicCast<VarHandle>(outputs_);
  PADDLE_ENFORCE(in_var_handles.size() % places_.size() == 0);
  PADDLE_ENFORCE_EQ(
      in_var_handles.size(), out_var_handles.size(),
      "The NoDummyInputSize and NoDummyOutputSize should be equal.");
  int data_num = in_var_handles.size() / places_.size();
  WaitInputVarGenerated();
F
fengjiayi 已提交
84
  std::vector<std::vector<LoDTensor *>> lod_tensors(data_num);
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
  std::vector<int> device_sizes;
  for (int i = 0; i < static_cast<int>(in_var_handles.size()); ++i) {
    PADDLE_ENFORCE_EQ(in_var_handles[i]->name_, out_var_handles[i]->name_,
                      "The name of input and output should be equal.");
    int place_idx = i / data_num;
    int data_idx = i % data_num;
    auto *local_scope =
        local_scopes_[place_idx]->FindVar(kLocalExecScopeName)->Get<Scope *>();
    auto *tensor_var = local_scope->FindVar(in_var_handles[i]->name_);
    PADDLE_ENFORCE(tensor_var->IsType<LoDTensor>());
    auto *tensor = tensor_var->GetMutable<LoDTensor>();
    PADDLE_ENFORCE(places_[place_idx] == tensor->place());
    lod_tensors[data_idx].push_back(tensor);
    int ins_size =
        tensor->lod().empty() ? tensor->dims()[0] : tensor->NumElements();
    if (data_idx == 0) {
      device_sizes.emplace_back(ins_size);
    } else {
      PADDLE_ENFORCE_EQ(ins_size, device_sizes.at(place_idx));
    }
  }
  const auto &balance_plan = GetBalancePlan(device_sizes);
  for (const auto &trans : balance_plan) {
    for (int data_idx = 0; data_idx < data_num; ++data_idx) {
      LoDTensor *src_tensor = lod_tensors[data_idx][trans[0]];
      LoDTensor *dst_tensor = lod_tensors[data_idx][trans[1]];
      int trans_ins_size = trans[2];
      LoD src_lod = src_tensor->lod();
      int src_ins_size =
          src_lod.empty() ? src_tensor->dims()[0] : src_tensor->NumElements();
      int cut_point = src_ins_size - trans_ins_size;
      if (!src_lod.empty()) {
        for (auto &level : src_lod) {
          cut_point = level[cut_point];
        }
      }
      TensorCopySync(src_tensor->Slice(cut_point, src_tensor->dims()[0]),
                     dst_tensor->place(), dst_tensor);
      src_tensor->ShareDataWith(src_tensor->Slice(0, cut_point));
      if (!src_lod.empty()) {
        dst_tensor->set_lod(SliceInLevel(
            src_lod, 0, src_ins_size - trans_ins_size, src_ins_size));
        src_tensor->set_lod(
            SliceInLevel(src_lod, 0, 0, src_ins_size - trans_ins_size));
      }
    }
  }
}

}  // namespace details
}  // namespace framework
}  // namespace paddle