CudnnConvBaseLayer.cpp 4.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wangyang59 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "CudnnConvBaseLayer.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"

namespace paddle {
20 21
REGISTER_LAYER(cudnn_conv, CudnnConvBaseLayer);
REGISTER_LAYER(cudnn_convt, CudnnConvBaseLayer);
W
wangyang59 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

bool CudnnConvBaseLayer::init(const LayerMap &layerMap,
                              const ParameterMap &parameterMap) {
  if (!ConvBaseLayer::init(layerMap, parameterMap)) return false;
  CHECK(useGpu_) << "CudnnConvLayer only support gpu";

  CHECK_EQ(inputLayers_.size(), parameters_.size());
  projections_.reserve(inputLayers_.size());
  projConf_.reserve(inputLayers_.size());

  numFilters_ = config_.num_filters();
  CHECK(config_.shared_biases());
  for (size_t i = 0; i < inputLayers_.size(); i++) {
    ProjectionConfig *conf = new ProjectionConfig();
    if (isDeconv_) {
      conf->set_type("convt");
    } else {
      conf->set_type("conv");
    }
    conf->set_num_filters(numFilters_);
    ConvConfig *convConf = conf->mutable_conv_conf();
    *convConf = *(config_.mutable_inputs(i)->mutable_conv_conf());
    conf->set_input_size(getPrev(i)->getSize());
    conf->set_output_size(getSize());
    projConf_.emplace_back(conf);
    projections_.emplace_back(
        Projection::create(*projConf_[i], parameters_[i], useGpu_));
C
chengduoZH 已提交
49 50 51 52 53 54 55 56

    // create a new weight
    size_t height, width;
    height = filterPixels_[i] * filterChannels_[i];
    width = (!isDeconv_) ? numFilters_ : channels_[i];
    CHECK_EQ(parameters_[i]->getSize(), width * height);
    Weight *w = new Weight(height, width, parameters_[i]);
    weights_.emplace_back(w);
W
wangyang59 已提交
57 58
  }

C
chengduoZH 已提交
59 60 61 62 63 64 65 66 67 68
  if (biasParameter_.get()) {
    if (sharedBiases_) {
      CHECK_EQ((size_t)numFilters_, biasParameter_->getSize());
      biases_ =
          std::unique_ptr<Weight>(new Weight(numFilters_, 1, biasParameter_));
    } else {
      biases_ =
          std::unique_ptr<Weight>(new Weight(getSize(), 1, biasParameter_));
    }
  }
W
wangyang59 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
  if (biases_.get() && sharedBiases_) {
    hl_create_tensor_descriptor(&biasDesc_);
    hl_create_tensor_descriptor(&outputDesc_);
    hl_tensor_reshape(biasDesc_, 1, numFilters_, 1, 1);
  }

  return true;
}

void CudnnConvBaseLayer::forward(PassType passType) {
  Layer::forward(passType);

  int batchSize = getInput(0).getBatchSize();
  resetOutput(batchSize, calOutputSize());

  for (size_t i = 0; i != inputLayers_.size(); ++i) {
    projections_[i]->forward(&getInput(i), &getOutput(), passType);
  }

  if (biases_) {
    REGISTER_TIMER_INFO("CudnnConvBiasTimer", getName().c_str());
    int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
91 92
    int outH = outputH_[0];
    int outW = outputW_[0];
W
wangyang59 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

    hl_tensor_reshape(outputDesc_,
                      batchSize,
                      numFilters_,
                      outH,
                      outW,
                      numFilters_ * outH * outW,
                      outH * outW,
                      outW,
                      1);
    real *outData = getOutputValue()->getData();
    real *biasData = biases_->getW()->getData();
    hl_convolution_forward_add_bias(biasDesc_, biasData, outputDesc_, outData);
  }

  forwardActivation();
}

void CudnnConvBaseLayer::backward(const UpdateCallback &callback) {
  backwardActivation();

  if (biases_ && biases_->getWGrad()) {
    REGISTER_TIMER_INFO("CudnnConvBpBiasTimer", getName().c_str());
    real *biasGrad = biases_->getWGrad()->getData();
    real *outGrad = getOutputGrad()->getData();
    hl_convolution_backward_bias(biasDesc_, biasGrad, outputDesc_, outGrad);

    biases_->getParameterPtr()->incUpdate(callback);
  }

  for (size_t i = 0; i != inputLayers_.size(); ++i) {
    projections_[i]->backward(callback);
  }
}

CudnnConvBaseLayer::~CudnnConvBaseLayer() {
  if (biases_) {
    hl_destroy_tensor_descriptor(biasDesc_);
    hl_destroy_tensor_descriptor(outputDesc_);
  }
}

}  // namespace paddle