functional.py 22.0 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import division

L
LielinJiang 已提交
17
import sys
L
LielinJiang 已提交
18 19
import math
import numbers
20 21
import warnings
import collections
L
LielinJiang 已提交
22

23 24 25 26
import numpy as np
from PIL import Image
from numpy import sin, cos, tan
import paddle
L
LielinJiang 已提交
27

28 29 30
from . import functional_pil as F_pil
from . import functional_cv2 as F_cv2
from . import functional_tensor as F_t
L
LielinJiang 已提交
31

32
__all__ = []
L
LielinJiang 已提交
33

L
LielinJiang 已提交
34

35 36
def _is_pil_image(img):
    return isinstance(img, Image.Image)
L
LielinJiang 已提交
37 38


39 40
def _is_tensor_image(img):
    return isinstance(img, paddle.Tensor)
L
LielinJiang 已提交
41

42 43 44 45 46 47 48 49 50

def _is_numpy_image(img):
    return isinstance(img, np.ndarray) and (img.ndim in {2, 3})


def to_tensor(pic, data_format='CHW'):
    """Converts a ``PIL.Image`` or ``numpy.ndarray`` to paddle.Tensor.

    See ``ToTensor`` for more details.
L
LielinJiang 已提交
51 52

    Args:
53
        pic (PIL.Image|np.ndarray): Image to be converted to tensor.
L
LielinJiang 已提交
54
        data_format (str, optional): Data format of output tensor, should be 'HWC' or 
55 56 57
            'CHW'. Default: 'CHW'.

    Returns:
L
LielinJiang 已提交
58
        Tensor: Converted image. Data type is same as input img.
L
LielinJiang 已提交
59 60 61 62 63

    Examples:
        .. code-block:: python

            import numpy as np
64
            from PIL import Image
65
            from paddle.vision.transforms import functional as F
L
LielinJiang 已提交
66

67
            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
L
LielinJiang 已提交
68

69
            fake_img = Image.fromarray(fake_img)
L
LielinJiang 已提交
70

71 72
            tensor = F.to_tensor(fake_img)
            print(tensor.shape)
L
LielinJiang 已提交
73 74

    """
75 76 77 78 79
    if not (_is_pil_image(pic) or _is_numpy_image(pic) or
            _is_tensor_image(pic)):
        raise TypeError(
            'pic should be PIL Image or Tensor Image or ndarray with dim=[2 or 3]. Got {}'.
            format(type(pic)))
80 81 82

    if _is_pil_image(pic):
        return F_pil.to_tensor(pic, data_format)
83
    elif _is_numpy_image(pic):
84
        return F_cv2.to_tensor(pic, data_format)
85 86
    else:
        return pic if data_format.lower() == 'chw' else pic.transpose((1, 2, 0))
L
LielinJiang 已提交
87 88


89
def resize(img, size, interpolation='bilinear'):
L
LielinJiang 已提交
90
    """
91
    Resizes the image to given size
L
LielinJiang 已提交
92 93

    Args:
94
        input (PIL.Image|np.ndarray): Image to be resized.
L
LielinJiang 已提交
95
        size (int|list|tuple): Target size of input data, with (height, width) shape.
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        interpolation (int|str, optional): Interpolation method. when use pil backend, 
            support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC, 
            - "box": Image.BOX, 
            - "lanczos": Image.LANCZOS, 
            - "hamming": Image.HAMMING
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "area": cv2.INTER_AREA, 
            - "bicubic": cv2.INTER_CUBIC, 
            - "lanczos": cv2.INTER_LANCZOS4

    Returns:
        PIL.Image or np.array: Resized image.
L
LielinJiang 已提交
113 114 115 116 117

    Examples:
        .. code-block:: python

            import numpy as np
118
            from PIL import Image
119
            from paddle.vision.transforms import functional as F
L
LielinJiang 已提交
120

121
            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
L
LielinJiang 已提交
122

123
            fake_img = Image.fromarray(fake_img)
L
LielinJiang 已提交
124

125 126 127 128 129
            converted_img = F.resize(fake_img, 224)
            print(converted_img.size)

            converted_img = F.resize(fake_img, (200, 150))
            print(converted_img.size)
L
LielinJiang 已提交
130
    """
131 132
    if not (_is_pil_image(img) or _is_numpy_image(img) or
            _is_tensor_image(img)):
133
        raise TypeError(
134
            'img should be PIL Image or Tensor Image or ndarray with dim=[2 or 3]. Got {}'.
135 136 137 138
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.resize(img, size, interpolation)
139 140
    elif _is_tensor_image(img):
        return F_t.resize(img, size, interpolation)
L
LielinJiang 已提交
141
    else:
142
        return F_cv2.resize(img, size, interpolation)
L
LielinJiang 已提交
143 144


145 146 147
def pad(img, padding, fill=0, padding_mode='constant'):
    """
    Pads the given PIL.Image or numpy.array on all sides with specified padding mode and fill value.
L
LielinJiang 已提交
148 149

    Args:
150 151
        img (PIL.Image|np.array): Image to be padded.
        padding (int|list|tuple): Padding on each border. If a single int is provided this
152 153
            is used to pad all borders. If list/tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a list/tuple of length 4 is provided
L
LielinJiang 已提交
154 155
            this is the padding for the left, top, right and bottom borders
            respectively.
156
        fill (float, optional): Pixel fill value for constant fill. If a tuple of
L
LielinJiang 已提交
157
            length 3, it is used to fill R, G, B channels respectively.
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
            This value is only used when the padding_mode is constant. Default: 0. 
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default: 'constant'.

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value on the edge of the image

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                       padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                       will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image (repeating the last value on the edge)

                         padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                         will result in [2, 1, 1, 2, 3, 4, 4, 3]
L
LielinJiang 已提交
174 175

    Returns:
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
        PIL.Image or np.array: Padded image.

    Examples:
        .. code-block:: python

            import numpy as np
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)

            padded_img = F.pad(fake_img, padding=1)
            print(padded_img.size)

            padded_img = F.pad(fake_img, padding=(2, 1))
            print(padded_img.size)
    """
195 196
    if not (_is_pil_image(img) or _is_numpy_image(img) or
            _is_tensor_image(img)):
197
        raise TypeError(
198
            'img should be PIL Image or Tensor Image or ndarray with dim=[2 or 3]. Got {}'.
199 200 201 202
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.pad(img, padding, fill, padding_mode)
203 204
    elif _is_tensor_image(img):
        return F_t.pad(img, padding, fill, padding_mode)
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    else:
        return F_cv2.pad(img, padding, fill, padding_mode)


def crop(img, top, left, height, width):
    """Crops the given Image.

    Args:
        img (PIL.Image|np.array): Image to be cropped. (0,0) denotes the top left 
            corner of the image.
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.

    Returns:
        PIL.Image or np.array: Cropped image.
L
LielinJiang 已提交
222 223 224 225 226

    Examples:
        .. code-block:: python

            import numpy as np
227 228
            from PIL import Image
            from paddle.vision.transforms import functional as F
L
LielinJiang 已提交
229

230
            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
L
LielinJiang 已提交
231

232
            fake_img = Image.fromarray(fake_img)
L
LielinJiang 已提交
233

234 235
            cropped_img = F.crop(fake_img, 56, 150, 200, 100)
            print(cropped_img.size)
L
LielinJiang 已提交
236 237

    """
238 239
    if not (_is_pil_image(img) or _is_numpy_image(img) or
            _is_tensor_image(img)):
240
        raise TypeError(
241
            'img should be PIL Image or Tensor Image or ndarray with dim=[2 or 3]. Got {}'.
242 243 244 245
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.crop(img, top, left, height, width)
246 247
    elif _is_tensor_image(img):
        return F_t.crop(img, top, left, height, width)
248 249 250 251 252 253 254 255 256 257 258 259 260 261
    else:
        return F_cv2.crop(img, top, left, height, width)


def center_crop(img, output_size):
    """Crops the given Image and resize it to desired size.

        Args:
            img (PIL.Image|np.array): Image to be cropped. (0,0) denotes the top left corner of the image.
            output_size (sequence or int): (height, width) of the crop box. If int,
                it is used for both directions
        
        Returns:
            PIL.Image or np.array: Cropped image.
L
LielinJiang 已提交
262

263 264 265 266 267 268 269 270 271 272 273 274 275 276
        Examples:
        .. code-block:: python

            import numpy as np
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)

            cropped_img = F.center_crop(fake_img, (150, 100))
            print(cropped_img.size)
        """
277 278
    if not (_is_pil_image(img) or _is_numpy_image(img) or
            _is_tensor_image(img)):
279
        raise TypeError(
280
            'img should be PIL Image or Tensor Image or ndarray with dim=[2 or 3]. Got {}'.
281 282 283 284
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.center_crop(img, output_size)
285 286
    elif _is_tensor_image(img):
        return F_t.center_crop(img, output_size)
287 288 289 290
    else:
        return F_cv2.center_crop(img, output_size)


L
LielinJiang 已提交
291
def hflip(img):
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
    """Horizontally flips the given Image or np.array.

    Args:
        img (PIL.Image|np.array): Image to be flipped.

    Returns:
        PIL.Image or np.array:  Horizontall flipped image.

    Examples:
        .. code-block:: python

            import numpy as np
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)

            flpped_img = F.hflip(fake_img)
            print(flpped_img.size)

    """
315 316
    if not (_is_pil_image(img) or _is_numpy_image(img) or
            _is_tensor_image(img)):
317
        raise TypeError(
318
            'img should be PIL Image or Tensor Image or ndarray with dim=[2 or 3]. Got {}'.
319 320 321 322
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.hflip(img)
323 324
    elif _is_tensor_image(img):
        return F_t.hflip(img)
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
    else:
        return F_cv2.hflip(img)


def vflip(img):
    """Vertically flips the given Image or np.array.

    Args:
        img (PIL.Image|np.array): Image to be flipped.

    Returns:
        PIL.Image or np.array:  Vertically flipped image.

    Examples:
        .. code-block:: python

            import numpy as np
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)

            flpped_img = F.vflip(fake_img)
            print(flpped_img.size)

    """
353 354
    if not (_is_pil_image(img) or _is_numpy_image(img) or
            _is_tensor_image(img)):
355
        raise TypeError(
356
            'img should be PIL Image or Tensor Image or ndarray with dim=[2 or 3]. Got {}'.
357 358 359 360
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.vflip(img)
361 362
    elif _is_tensor_image(img):
        return F_t.vflip(img)
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
    else:
        return F_cv2.vflip(img)


def adjust_brightness(img, brightness_factor):
    """Adjusts brightness of an Image.

    Args:
        img (PIL.Image|np.array): Image to be adjusted.
        brightness_factor (float): How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
        PIL.Image or np.array: Brightness adjusted image.

    Examples:
        .. code-block:: python

            import numpy as np
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)

            converted_img = F.adjust_brightness(fake_img, 0.4)
            print(converted_img.size)
    """
    if not (_is_pil_image(img) or _is_numpy_image(img)):
        raise TypeError(
            'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.adjust_brightness(img, brightness_factor)
    else:
        return F_cv2.adjust_brightness(img, brightness_factor)


def adjust_contrast(img, contrast_factor):
    """Adjusts contrast of an Image.

    Args:
        img (PIL.Image|np.array): Image to be adjusted.
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
        PIL.Image or np.array: Contrast adjusted image.

    Examples:
        .. code-block:: python

            import numpy as np
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)

            converted_img = F.adjust_contrast(fake_img, 0.4)
            print(converted_img.size)
    """
    if not (_is_pil_image(img) or _is_numpy_image(img)):
        raise TypeError(
            'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.adjust_contrast(img, contrast_factor)
    else:
        return F_cv2.adjust_contrast(img, contrast_factor)


def adjust_saturation(img, saturation_factor):
    """Adjusts color saturation of an image.

    Args:
        img (PIL.Image|np.array): Image to be adjusted.
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
        PIL.Image or np.array: Saturation adjusted image.

    Examples:
        .. code-block:: python

            import numpy as np
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)

            converted_img = F.adjust_saturation(fake_img, 0.4)
            print(converted_img.size)

    """
    if not (_is_pil_image(img) or _is_numpy_image(img)):
        raise TypeError(
            'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.adjust_saturation(img, saturation_factor)
    else:
        return F_cv2.adjust_saturation(img, saturation_factor)


def adjust_hue(img, hue_factor):
    """Adjusts hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

    Args:
        img (PIL.Image|np.array): Image to be adjusted.
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
        PIL.Image or np.array: Hue adjusted image.

    Examples:
        .. code-block:: python

            import numpy as np
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)

            converted_img = F.adjust_hue(fake_img, 0.4)
            print(converted_img.size)

    """
    if not (_is_pil_image(img) or _is_numpy_image(img)):
        raise TypeError(
            'img should be PIL Image or ndarray with dim=[2 or 3]. Got {}'.
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.adjust_hue(img, hue_factor)
    else:
        return F_cv2.adjust_hue(img, hue_factor)


526 527 528 529 530 531
def rotate(img,
           angle,
           interpolation="nearest",
           expand=False,
           center=None,
           fill=0):
L
LielinJiang 已提交
532 533
    """Rotates the image by angle.

534

L
LielinJiang 已提交
535
    Args:
536 537
        img (PIL.Image|np.array): Image to be rotated.
        angle (float or int): In degrees degrees counter clockwise order.
538
        interpolation (str, optional): Interpolation method. If omitted, or if the 
539 540 541 542 543 544 545 546 547 548
            image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST 
            according the backend. when use pil backend, support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "bicubic": cv2.INTER_CUBIC
        expand (bool, optional): Optional expansion flag.
L
LielinJiang 已提交
549 550 551
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
552
        center (2-list|2-tuple, optional): Optional center of rotation.
L
LielinJiang 已提交
553 554
            Origin is the upper left corner.
            Default is the center of the image.
555
        fill (3-list|3-tuple or int): RGB pixel fill value for area outside the rotated image.
556 557
            If int, it is used for all channels respectively.

L
LielinJiang 已提交
558 559

    Returns:
560
        PIL.Image or np.array: Rotated image.
L
LielinJiang 已提交
561 562 563 564 565

    Examples:
        .. code-block:: python

            import numpy as np
566 567 568 569
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
L
LielinJiang 已提交
570

571
            fake_img = Image.fromarray(fake_img)
L
LielinJiang 已提交
572

573 574
            rotated_img = F.rotate(fake_img, 90)
            print(rotated_img.size)
L
LielinJiang 已提交
575 576

    """
577 578
    if not (_is_pil_image(img) or _is_numpy_image(img) or
            _is_tensor_image(img)):
579
        raise TypeError(
580
            'img should be PIL Image or Tensor Image or ndarray with dim=[2 or 3]. Got {}'.
581 582
            format(type(img)))

583 584 585 586 587
    if isinstance(center, list):
        center = tuple(center)
    if isinstance(fill, list):
        fill = tuple(fill)

588
    if _is_pil_image(img):
589
        return F_pil.rotate(img, angle, interpolation, expand, center, fill)
590 591
    elif _is_tensor_image(img):
        return F_t.rotate(img, angle, interpolation, expand, center, fill)
L
LielinJiang 已提交
592
    else:
593
        return F_cv2.rotate(img, angle, interpolation, expand, center, fill)
L
LielinJiang 已提交
594 595 596 597 598 599


def to_grayscale(img, num_output_channels=1):
    """Converts image to grayscale version of image.

    Args:
600
        img (PIL.Image|np.array): Image to be converted to grayscale.
L
LielinJiang 已提交
601 602

    Returns:
603 604 605 606
        PIL.Image or np.array: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b
L
LielinJiang 已提交
607 608
    
    Examples:
609 610 611 612 613 614 615 616 617 618 619 620 621 622
        .. code-block:: python

            import numpy as np
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)

            gray_img = F.to_grayscale(fake_img)
            print(gray_img.size)

    """
623 624
    if not (_is_pil_image(img) or _is_numpy_image(img) or
            _is_tensor_image(img)):
625
        raise TypeError(
626
            'img should be PIL Image or Tensor Image or ndarray with dim=[2 or 3]. Got {}'.
627 628 629 630
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.to_grayscale(img, num_output_channels)
631 632
    elif _is_tensor_image(img):
        return F_t.to_grayscale(img, num_output_channels)
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
    else:
        return F_cv2.to_grayscale(img, num_output_channels)


def normalize(img, mean, std, data_format='CHW', to_rgb=False):
    """Normalizes a tensor or image with mean and standard deviation.

    Args:
        img (PIL.Image|np.array|paddle.Tensor): input data to be normalized.
        mean (list|tuple): Sequence of means for each channel.
        std (list|tuple): Sequence of standard deviations for each channel.
        data_format (str, optional): Data format of input img, should be 'HWC' or 
            'CHW'. Default: 'CHW'.
        to_rgb (bool, optional): Whether to convert to rgb. If input is tensor, 
            this option will be igored. Default: False.

    Returns:
L
LielinJiang 已提交
650
        np.ndarray or Tensor: Normalized mage. Data format is same as input img.
L
LielinJiang 已提交
651
    
652
    Examples:
L
LielinJiang 已提交
653 654 655
        .. code-block:: python

            import numpy as np
656 657 658 659 660 661
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)
L
LielinJiang 已提交
662

663 664
            mean = [127.5, 127.5, 127.5]
            std = [127.5, 127.5, 127.5]
L
LielinJiang 已提交
665

666 667
            normalized_img = F.normalize(fake_img, mean, std, data_format='HWC')
            print(normalized_img.max(), normalized_img.min())
L
LielinJiang 已提交
668 669 670

    """

671 672
    if _is_tensor_image(img):
        return F_t.normalize(img, mean, std, data_format)
L
LielinJiang 已提交
673
    else:
674 675
        if _is_pil_image(img):
            img = np.array(img).astype(np.float32)
L
LielinJiang 已提交
676

677
        return F_cv2.normalize(img, mean, std, data_format, to_rgb)