reduce.h 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <algorithm>
#include <memory>
#include <set>
#include <string>
#include <vector>

22 23 24 25
#include "paddle/phi/core/visit_type.h"
#include "paddle/phi/kernels/cast_kernel.h"
#include "paddle/phi/kernels/xpu/reduce_util.h"

26 27 28 29 30 31 32 33 34 35 36 37 38 39
namespace phi {

template <typename Context, typename T>
int XPUReduce(const Context& dev_ctx,
              const DenseTensor& x,
              const std::vector<int64_t>& dims,
              bool keep_dim,
              bool reduce_all,
              DenseTensor* out,
              std::function<int(xpu::Context*,
                                const T*,
                                T*,
                                const std::vector<int>&,
                                const std::vector<int>&)> func) {
Y
ykkk2333 已提交
40
  using XPUType = typename XPUTypeTrait<T>::Type;
W
wanghuancoder 已提交
41
  reduce_all = recompute_reduce_all(x, dims, reduce_all);
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
  dev_ctx.template Alloc<T>(out);

  const auto* x_data = x.data<T>();
  auto* y_data = out->data<T>();
  const auto& input_dim_size = x.dims().size();
  std::vector<int> true_dims;
  for (size_t i = 0; i < dims.size(); ++i) {
    if (dims[i] < 0) {
      true_dims.push_back(dims[i] + input_dim_size);
    } else {
      true_dims.push_back(dims[i]);
    }
  }

  std::vector<int> reduce_dims;
  std::vector<int> xdims((input_dim_size));
  for (int i = 0; i < input_dim_size; ++i) {
    xdims[i] = x.dims()[i];
  }
  if (reduce_all) {
    for (int i = 0; i < input_dim_size; ++i) {
      reduce_dims.push_back(i);
    }
  } else {
    std::set<int> dims_set(true_dims.begin(), true_dims.end());
    for (auto i = 0; i < input_dim_size; i++) {
      if (dims_set.find(i) != dims_set.end()) {
        if (x.dims()[i] != 1) {
          reduce_dims.push_back(i);
        }
      }
    }
  }

  int r = xpu::SUCCESS;
  if (reduce_dims.size() == 0) {
Y
ykkk2333 已提交
78 79 80
    r = xpu::copy<XPUType>(dev_ctx.x_context(),
                           reinterpret_cast<const XPUType*>(x_data),
                           reinterpret_cast<XPUType*>(y_data),
J
jiangfan06 已提交
81
                           x.numel());
82 83 84 85 86 87 88
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "copy");
  } else {
    r = func(dev_ctx.x_context(), x_data, y_data, xdims, reduce_dims);
  }
  return r;
}

89 90 91 92 93 94 95 96 97 98 99 100 101 102
template <typename DeviceContext, typename T, typename OutT, typename Functor>
void ReduceKernelImpl(const DeviceContext& dev_ctx,
                      const phi::DenseTensor& input,
                      phi::DenseTensor* output,
                      const std::vector<int>& xdims,
                      const std::vector<int>& reduce_dims) {
  using XPUType = typename XPUTypeTrait<OutT>::Type;
  dev_ctx.template Alloc<OutT>(output);
  const auto* x_data = input.data<OutT>();
  auto* y_data = output->data<OutT>();
  if (reduce_dims.size() == 0) {
    int r = xpu::copy<XPUType>(dev_ctx.x_context(),
                               reinterpret_cast<const XPUType*>(x_data),
                               reinterpret_cast<XPUType*>(y_data),
J
jiangfan06 已提交
103
                               input.numel());
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "copy");
  } else {
    Functor func;
    func(dev_ctx.x_context(), x_data, y_data, xdims, reduce_dims);
  }
}

template <typename DeviceContext, typename T, typename Functor>
void XPUReduce(const DeviceContext& dev_ctx,
               const DenseTensor& x,
               const std::vector<int64_t>& dims,
               bool keep_dim,
               bool reduce_all,
               DataType out_dtype,
               DenseTensor* out) {
  reduce_all = recompute_reduce_all(x, dims, reduce_all);

  const auto& input_dim_size = x.dims().size();
  std::vector<int> true_dims;
  for (size_t i = 0; i < dims.size(); ++i) {
    if (dims[i] < 0) {
      true_dims.push_back(dims[i] + input_dim_size);
    } else {
      true_dims.push_back(dims[i]);
    }
  }
  std::vector<int> reduce_dims;
  std::vector<int> xdims((input_dim_size));
  for (int i = 0; i < input_dim_size; ++i) {
    xdims[i] = x.dims()[i];
  }
  if (reduce_all) {
    for (int i = 0; i < input_dim_size; ++i) {
      reduce_dims.push_back(i);
    }
  } else {
    std::set<int> dims_set(true_dims.begin(), true_dims.end());
    for (auto i = 0; i < input_dim_size; i++) {
      if (dims_set.find(i) != dims_set.end()) {
        if (x.dims()[i] != 1) {
          reduce_dims.push_back(i);
        }
      }
    }
  }
  // no need to cast dtype
  if (out_dtype == phi::DataType::UNDEFINED || out_dtype == x.dtype()) {
    // do reduce sum
    PD_VISIT_XPU_REDUCE_TYPES(
        x.dtype(), "ReduceKernelImpl", ([&] {
          phi::ReduceKernelImpl<DeviceContext, T, data_t, Functor>(
              dev_ctx, x, out, xdims, reduce_dims);
        }));
  } else {
    // cast x tensor to out_dtype
    auto tmp_tensor = phi::Cast<T, DeviceContext>(dev_ctx, x, out_dtype);

    // do reduce sum
    PD_VISIT_XPU_REDUCE_TYPES(
        out_dtype, "ReduceKernelImpl", ([&] {
          phi::ReduceKernelImpl<DeviceContext, T, data_t, Functor>(
              dev_ctx, tmp_tensor, out, xdims, reduce_dims);
        }));

    if (dev_ctx.x_context()->xpu_stream) {
      dev_ctx.Wait();
    }
  }
}

174
}  // namespace phi