variable_index.py 26.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import numpy as np
from . import unique_name
from . import core
W
WeiXin 已提交
19
import paddle
20 21 22 23

MAX_INTEGER = 2**31 - 1


W
WeiXin 已提交
24
def is_list_tuple(index, contain_type):
25

W
WeiXin 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    def _is_list_tuple(item):
        if not (isinstance(item, (list, tuple)) or type(item) == contain_type):
            return False
        if isinstance(item, (tuple, list)):
            for s in item:
                if not _is_list_tuple(s):
                    return False
        return True

    if not isinstance(index, (tuple, list)):
        return False
    for s in index:
        if not _is_list_tuple(s):
            return False
    return True


def is_one_dim_list(index, contain_type):
    if isinstance(index, list):
        for i in index:
            if not isinstance(i, contain_type):
                return False
    else:
        return False
    return True


def get_list_index_shape(var_dims, index_dims):
    var_dims_size = len(var_dims)
    index_dims_size = len(index_dims)

    out_dims_size = var_dims_size - index_dims[0] + index_dims_size - 1

    out_dims_shape = [1] * out_dims_size

    out_dims_shape[:index_dims_size - 1] = index_dims[1:]

    out_dims_shape[index_dims_size - 1:] = var_dims[index_dims[0]:]
    return out_dims_shape


class SliceInfo:
68

W
WeiXin 已提交
69 70 71
    def __init__(self):
        self.pre_shape = None
        self.indexes = []
W
WeiXin 已提交
72
        self.dtype = None
W
WeiXin 已提交
73 74

    def update(self, index):
75 76
        if is_list_tuple(index, int) or isinstance(
                index, (paddle.fluid.Variable, np.ndarray)):
W
WeiXin 已提交
77 78 79 80
            # convert index to Tensor
            if not isinstance(index, paddle.fluid.Variable):
                index = paddle.assign(index)

W
WeiXin 已提交
81 82 83 84 85
            if self.dtype is None:
                self.dtype = index.dtype
            else:
                if index.dtype != self.dtype:
                    raise IndexError(
86 87
                        "Data type of Tensor/List index should be same. The current data type is {}, but the previous data type is {}."
                        .format(index.dtype, self.dtype))
W
WeiXin 已提交
88

W
WeiXin 已提交
89 90 91 92 93 94
            self.indexes.append(index)

            if self.pre_shape is None:
                self.pre_shape = index.shape
            else:
                if self.pre_shape != index.shape:
95
                    # broadcast
W
WeiXin 已提交
96 97 98
                    cur_shape = paddle.broadcast_shape(self.pre_shape,
                                                       index.shape)
                    for i in range(len(self.indexes)):
99 100
                        self.indexes[i] = paddle.broadcast_to(
                            self.indexes[i], cur_shape)
W
WeiXin 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
                self.pre_shape = self.indexes[-1].shape
        else:
            raise ValueError(
                "Index should be list/tuple of int or Tensor, but received {}.".
                format(index))

    def shape_stride(self, shape):
        s = [1] * len(shape)
        for i in range(len(shape) - 2, -1, -1):
            s[i] = shape[i + 1] * s[i + 1]

        return s

    def numel(self, shape):
        return reduce(lambda x, y: x * y, shape)

    def get_offset_stride(self, tensor_shape):
        for index in self.indexes:
            if not isinstance(index, paddle.fluid.Variable):
                raise ValueError(
                    "only support list/tensor index, but received {}.".format(
                        type(index)))

        if len(self.indexes) <= len(tensor_shape) or len(self.indexes) == 1:
            shape = paddle.stack(self.indexes)
126 127 128 129
            axes = list(range(1,
                              len(self.pre_shape) + 1)) + [
                                  0,
                              ]
W
WeiXin 已提交
130 131 132

        else:
            raise ValueError(
133 134
                "too many indices for tensor: tensor is {}-dimensional, but {} were indexed"
                .format(len(tensor_shape), self.pre_shape[0]))
W
WeiXin 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

        shape_transpose = paddle.transpose(shape, axes)
        return shape_transpose

    def get_item(self, tensor):
        shape_transpose = self.get_offset_stride(tensor.shape)
        index = paddle.assign(shape_transpose)
        return paddle.gather_nd(tensor, index)

    def set_item(self, tensor_origin, value):

        if not isinstance(value, paddle.fluid.Variable):
            value = paddle.assign(value)
        tensor_type = None

        if tensor_origin.dtype in [
                core.VarDesc.VarType.FP32, core.VarDesc.VarType.FP64
        ]:
            tensor = tensor_origin
        else:
            tensor_type = tensor_origin.dtype
            tensor = tensor_origin.astype(core.VarDesc.VarType.FP32)

        if value.dtype != tensor.dtype:
            value = value.astype(tensor.dtype)

        shape_transpose = self.get_offset_stride(tensor_origin.shape)
        index = paddle.assign(shape_transpose)

164 165 166
        gather_tensor_shape = get_list_index_shape(tensor.shape, [
            len(self.indexes),
        ] + list(self.indexes[-1].shape))
W
WeiXin 已提交
167

168 169 170
        value_dims_bd = [
            1,
        ] * len(gather_tensor_shape)
W
WeiXin 已提交
171 172 173
        value_dims_bd[-len(value.shape):] = list(value.shape)

        for i in range(len(gather_tensor_shape)):
174 175
            if not (value_dims_bd[i] == gather_tensor_shape[i]
                    or value_dims_bd[i] == 1):
W
WeiXin 已提交
176 177 178 179 180
                raise ValueError("{} can not broadcast into {}".format(
                    value.shape, gather_tensor_shape))

        value_broadcast = paddle.broadcast_to(value, gather_tensor_shape)

181 182
        value_1d = value_broadcast.reshape(
            [-1] + gather_tensor_shape[len(index.shape) - 1:])
W
WeiXin 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

        index_1d = index.reshape([-1, index.shape[-1]])

        tensor_stride = paddle.assign(
            self.shape_stride(tensor.shape[:index.shape[-1]]))
        inds = []
        for i in range(index_1d.shape[0]):
            temp = (index_1d[i] * tensor_stride).sum()
            inds.append(temp)
        index_1d = paddle.stack(inds).reshape([-1])
        t_reshape = tensor.reshape([-1] + list(tensor.shape[index.shape[-1]:]))
        out = paddle.scatter(t_reshape, index_1d, value_1d)
        if tensor_type is not None:
            out = out.astype(tensor_type)
        tensor_origin[:] = out.reshape(tensor_origin.shape)

        return tensor_origin


202 203 204 205 206 207 208 209 210 211 212 213
def replace_ellipsis(var, item):
    from .framework import Variable
    # Use slice(None) to replace Ellipsis.
    # For var, var.shape = [3,4,5,6]
    #
    #   var[..., 1:2] -> var[:, :, :, 1:2]
    #   var[0, ...] -> var[0]
    #   var[0, ..., 1:2] -> var[0, :, :, 1:2]

    item = list(item)

    # Remove Variable to skip bug when counting Ellipsis
W
WeiXin 已提交
214
    item_remove_var = [
215 216
        ele for ele in item
        if not isinstance(ele, (Variable, np.ndarray)) and ele is not None
W
WeiXin 已提交
217
    ]
218 219 220 221 222 223 224 225 226 227 228
    ell_count = item_remove_var.count(Ellipsis)
    if ell_count == 0:
        return item
    elif ell_count > 1:
        raise IndexError("An index can only have a single ellipsis ('...')")

    ell_idx = item.index(Ellipsis)

    if ell_idx == len(item) - 1:
        return item[:-1]
    else:
229 230 231
        item[ell_idx:ell_idx +
             1] = [slice(None)
                   ] * (len(var.shape) - len(item) + item.count(None) + 1)
232 233 234 235

    return item


W
WeiXin 已提交
236 237 238 239 240 241 242 243 244 245
def replace_ndarray(item):
    new_item = []
    for slice_item in item:
        if isinstance(slice_item, np.ndarray):
            new_item.append(paddle.assign(slice_item))
        else:
            new_item.append(slice_item)
    return new_item


246 247 248 249 250 251 252 253 254 255 256
def replace_none(item):
    new_item = []
    none_axes = []
    for i, slice_item in enumerate(item):
        if slice_item is None:
            none_axes.append(i)
        else:
            new_item.append(slice_item)
    return new_item, none_axes


257 258 259 260 261 262 263 264 265 266
def is_integer_or_scalar_tensor(ele):
    from .framework import Variable
    if isinstance(ele, int):
        return True
    elif isinstance(ele, Variable):
        if len(ele.shape) == 1 and ele.shape[0] == 1:
            return True
    return False


267 268 269 270 271 272 273
def is_bool_tensor(ele):
    from .framework import Variable
    if isinstance(ele, Variable) and ele.dtype == paddle.bool:
        return True
    return False


274 275 276 277 278
def deal_attrs(attrs, attr, attr_name, tensor_attr_name, inputs, infer_flags):
    from .framework import Variable
    from .layers import utils

    if utils._contain_var(attr):
279 280
        inputs[tensor_attr_name] = utils._convert_to_tensor_list(attr,
                                                                 dtype="int64")
281 282 283 284 285 286 287 288 289 290
        for i, dim in enumerate(attr):
            if isinstance(dim, Variable):
                attrs[attr_name].append(-1)
                infer_flags[i] = -1
            else:
                attrs[attr_name].append(dim)
    else:
        attrs[attr_name] = attr


291
# the item is a tensor of bool
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
def get_value_for_bool_tensor(var, item):
    if len(item.shape) > len(var.shape):
        raise IndexError("The dims of bool index doesn't match indexed array, "
                         "the dims of bool index except to be equal or less "
                         "than {}, but received {}.".format(
                             len(var.shape), len(item.shape)))
    for i, dim_len in enumerate(item.shape):
        if dim_len != var.shape[i]:
            raise IndexError(
                "The dimension of bool index doesn't match indexed array along "\
                "dimension {}, the target dimension is {}, but received {}.".
                format(i, var.shape[i], dim_len))

    def idx_not_empty(var, item):
        from .layers.nn import where
        from ..tensor import gather_nd

        bool_2_idx = where(item == True)
        return gather_nd(var, bool_2_idx)

    def idx_empty(var):
        var_shape = list(var.shape)
        var_shape[0] = 0
        return paddle.empty(var_shape, dtype=var.dtype)

    from .layers.control_flow import cond
318 319
    return cond(paddle.logical_not(item.any()), lambda: idx_empty(var),
                lambda: idx_not_empty(var, item))
320 321


322 323 324 325 326 327 328 329 330 331
def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """
332
    from .framework import default_main_program, Variable
W
WeiXin 已提交
333 334 335
    if isinstance(item, list):
        if not is_one_dim_list(item, int):
            item = tuple(item)
336 337 338 339 340 341 342 343 344

    if not isinstance(item, tuple):
        item = (item, )

    decrease_axes = []
    axes = []
    starts = []
    ends = []
    steps = []
345
    reverse_axes = []
346 347

    use_strided_slice = False
W
WeiXin 已提交
348
    item = replace_ndarray(item)
349
    item = replace_ellipsis(var, item)
350
    item, none_axes = replace_none(item)
W
WeiXin 已提交
351
    slice_info = SliceInfo()
352 353

    for dim, slice_item in enumerate(item):
354 355
        if is_integer_or_scalar_tensor(
                slice_item) and not is_bool_tensor(slice_item):
356 357 358 359 360 361 362 363 364 365 366 367 368
            if isinstance(slice_item,
                          int) and var.shape[dim] is not None and var.shape[
                              dim] >= 0 and slice_item >= var.shape[dim]:
                # For python, if users write a, b = var, the __getitem__
                # method will iterate through 0, 1, 2 ... until __getitem__
                # throws an IndexError, then stop. The var[0], var[1] will
                # be given to a, b respectively. If more values are given,
                # the unpack size would cause error.
                #
                # We raises IndexError here to support grammar like `a, b = var`
                raise IndexError(
                    "slice_item %d at dim %d should be >= 0 and < var.shape[%d]: %d"
                    % (slice_item, dim, dim, var.shape[dim]))
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
            decrease_axes.append(dim)
            start = slice_item
            step = 1
            end = slice_item + 1 if slice_item != -1 else MAX_INTEGER

        elif isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            step = 1 if step is None else step

384 385 386
            if start is None:
                start = 0 if step > 0 else MAX_INTEGER
            if end is None:
387
                if var.shape[dim] != -1 and (
388 389 390
                        paddle.fluid.framework._non_static_mode()
                        or var.desc.type() !=
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY):
391 392 393
                    end = var.shape[dim] if step > 0 else -1
                else:
                    end = MAX_INTEGER if step > 0 else -1
394

395
        elif isinstance(slice_item, list):
Z
zyfncg 已提交
396
            all_bool = True
W
WeiXin 已提交
397 398 399 400 401

            if is_list_tuple(slice_item, int):
                slice_info.update(slice_item)
                continue

402
            for i in slice_item:
Z
zyfncg 已提交
403 404 405
                if type(i) is int:
                    all_bool = False
                elif not isinstance(i, bool):
406 407
                    raise TypeError("Only support int or bool in index list.")

408 409
            if len(item) != 1:
                raise IndexError(
410 411
                    "When index contains a list, its length must be 1, but received {}."
                    .format(len(item)))
Z
zyfncg 已提交
412 413 414 415 416 417 418
            new_slice_item = []
            if all_bool:
                if len(slice_item) != var.shape[0]:
                    raise IndexError(
                        "The dimension of bool index doesn't match indexed array along "\
                        "dimension 0, the target dimension is {}, but received {}.".
                        format(var.shape[0], len(slice_item)))
419 420 421 422
                for idx, ele in enumerate(slice_item):
                    if ele is True:
                        new_slice_item.append(idx)
                slice_item = new_slice_item
Z
zyfncg 已提交
423 424 425 426 427 428 429 430 431
            else:
                for idx, ele in enumerate(slice_item):
                    if type(ele) is int:
                        new_slice_item.append(ele)
                    elif ele is True:
                        new_slice_item.append(1)
                    else:
                        new_slice_item.append(0)
                slice_item = new_slice_item
432

433 434 435
            from .layers import assign
            from ..tensor import index_select

436
            idx = assign(np.array(slice_item).astype("int32"))
437 438
            return index_select(var, index=idx, axis=0)

W
wanghuancoder 已提交
439
        elif isinstance(slice_item, (Variable, core.eager.Tensor)):
W
WeiXin 已提交
440
            if len(item) == 1:
441

442
                from ..tensor import index_select
Z
zyfncg 已提交
443

W
WeiXin 已提交
444
                if slice_item.dtype == paddle.bool:
445
                    return get_value_for_bool_tensor(var, slice_item)
W
WeiXin 已提交
446 447 448 449 450 451 452 453 454
                else:
                    if len(slice_item.shape) == 1:
                        return index_select(var, index=slice_item, axis=0)
                    else:
                        slice_info.update(slice_item)
                        continue
            else:
                slice_info.update(slice_item)
                continue
455

456 457
        else:
            raise IndexError(
458 459
                "Valid index accept int or slice or ellipsis or list, but received {}."
                .format(slice_item))
460 461 462 463 464 465 466

        axes.append(dim)
        starts.append(start)
        ends.append(end)
        steps.append(step)
        use_strided_slice = True if step != 1 else use_strided_slice

W
WeiXin 已提交
467 468 469
    if slice_info.indexes:
        if len(slice_info.indexes) != len(item):
            raise IndexError(
470 471
                "Valid index accept int or slice or ellipsis or list, but received {}."
                .format(item))
W
WeiXin 已提交
472 473
        return slice_info.get_item(var)

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
    inputs = {'Input': [var]}
    attrs = {
        'axes': axes,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axes
    }
    if use_strided_slice:
        attrs['strides'] = []

    infer_flags = [1] * len(axes)
    deal_attrs(attrs, starts, "starts", "StartsTensorList", inputs, infer_flags)
    deal_attrs(attrs, ends, "ends", "EndsTensorList", inputs, infer_flags)
    deal_attrs(attrs, steps, "strides", "StridesTensorList", inputs,
               infer_flags)
    attrs['infer_flags'] = infer_flags

    out = var
    if len(axes) > 0:
        op_type = "strided_slice" if use_strided_slice else "slice"
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
        if paddle.fluid.framework.in_dygraph_mode() and op_type == "slice":
            if "StartsTensorList" in inputs.keys():
                st = inputs['StartsTensorList']
            else:
                st = attrs['starts']
            if "EndsTensorList" in inputs.keys():
                end = inputs['EndsTensorList']
            else:
                end = attrs['ends']
            out = paddle._C_ops.final_state_slice(var, axes, st, end,
                                                  attrs['infer_flags'],
                                                  attrs['decrease_axis'])
        else:
            target_block = default_main_program().current_block()

            slice_out_var = target_block.create_var(
                name=unique_name.generate_with_ignorable_key(var.name + "_" +
                                                             op_type),
                dtype=var.dtype)
            target_block.append_op(type=op_type,
                                   inputs=inputs,
                                   outputs={'Out': [slice_out_var]},
                                   attrs=attrs)
            out = slice_out_var
518

519
    if len(reverse_axes) > 0:
520
        from .layers.tensor import reverse
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
        out = reverse(out, axis=reverse_axes)

    # Deal with cases when all axes are decreased.
    # After slice, the shape of out is [1], which should have been [], but Paddle doesn't support scalar.
    # In order to ensure the correctness of the final shape of out, one dimension of out needs to be decreased.
    # For example:
    # # x.shape: (2,3,4)
    # out = x[0, 1, 1, None] # out.shape : (1)
    if len(decrease_axes) == len(var.shape):
        none_axes = none_axes[1:]

    if len(none_axes) > 0:
        # Deal with cases that decrease_axes is not empty
        # For example:
        # # x.shape: (2,3,4)
        # out = x[0, 0:2, None] # out.shape : (2, 1, 4)
        for idx, axis in enumerate(none_axes):
            l = len([i for i in decrease_axes if i < axis])
            new_axis = axis - l
            none_axes[idx] = new_axis

        # Deal with cases when all axes are decreased.
        # After slice, the shape of out is [1], which should have been [], but Paddle doesn't support scalar.
        # In order to ensure the correctness of the final shape of out, one dimension of out needs to be decreased.
        # For example:
        # # x.shape: (2,3,4)
        # out = x[0, 1, 1, None] # out.shape : (1)

        from ..tensor import unsqueeze
        out = unsqueeze(out, axis=none_axes)
551 552 553 554 555 556 557 558

    return out


def _setitem_impl_(var, item, value):
    from .framework import default_main_program, Variable

    inputs = {'Input': var}
W
WeiXin 已提交
559 560 561
    if isinstance(item, list):
        if not is_one_dim_list(item, int):
            item = tuple(item)
562 563 564 565 566 567 568 569 570 571
    # 1. Parse item
    if not isinstance(item, tuple):
        item = (item, )

    decrease_axes = []
    axes = []
    starts = []
    ends = []
    steps = []

W
WeiXin 已提交
572
    item = replace_ndarray(item)
573
    item = replace_ellipsis(var, item)
574
    item, none_axes = replace_none(item)
W
WeiXin 已提交
575
    slice_info = SliceInfo()
Z
zyfncg 已提交
576 577
    dim = 0
    for _, slice_item in enumerate(item):
578 579
        if is_integer_or_scalar_tensor(
                slice_item) and not is_bool_tensor(slice_item):
580 581 582 583 584 585 586 587 588 589 590
            decrease_axes.append(dim)
            start = slice_item
            end = slice_item + 1 if slice_item != -1 else MAX_INTEGER
            step = 1

        elif isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
Z
zyfncg 已提交
591
                dim += 1
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
                continue

            step = 1 if step is None else step

            if not isinstance(step, Variable) and step == 0:
                raise ValueError(
                    "When assign a value to a paddle.Tensor, step can not be 0, "
                    "but received step is {}.".format(step))

            if isinstance(step, Variable) and (start is None or end is None):
                raise ValueError(
                    "When assign a value to a paddle.Tensor, it's not supported that "
                    "the start or end is None when the type of step is paddle.Tensor."
                )

            if start is None:
                start = 0 if step > 0 else MAX_INTEGER

            if end is None:
                end = MAX_INTEGER if step > 0 else (0 - MAX_INTEGER)
Z
zyfncg 已提交
612 613 614 615 616 617 618 619 620 621 622 623
        elif isinstance(slice_item, list):
            if is_list_tuple(slice_item, int):
                slice_info.update(slice_item)
                continue

            for i in slice_item:
                if not isinstance(i, bool):
                    raise TypeError("Doesn't support {} in index list.".format(
                        type(i)))

            if len(item) != 1:
                raise IndexError(
624 625
                    "When index contains a bool list, its length must be 1, but received {}."
                    .format(len(item)))
Z
zyfncg 已提交
626 627 628 629 630 631 632 633 634

            from .layers import assign
            idx_tensor = assign(slice_item)
            return set_value_for_bool_tensor(var, idx_tensor, value)

        elif isinstance(slice_item, Variable):
            if slice_item.dtype == core.VarDesc.VarType.BOOL:
                if len(item) != 1:
                    raise IndexError(
635 636
                        "When index contains a bool tensor, its length must be 1, but received {}."
                        .format(len(item)))
Z
zyfncg 已提交
637 638 639 640
                return set_value_for_bool_tensor(var, slice_item, value)
            else:
                slice_info.update(slice_item)
                continue
641 642
        else:
            raise IndexError(
Z
zyfncg 已提交
643 644
                "Valid index accept int, slice, ellipsis, None, list of bool, Variable, "
                "but received {}.".format(slice_item))
645 646 647 648 649 650

        axes.append(dim)
        starts.append(start)
        ends.append(end)
        steps.append(step)

Z
zyfncg 已提交
651
        dim += 1
W
WeiXin 已提交
652 653 654
    if slice_info.indexes:
        if len(slice_info.indexes) != len(item):
            raise IndexError(
655 656
                "Valid index accept int or slice or ellipsis or list, but received {}."
                .format(item))
W
WeiXin 已提交
657
        return slice_info.set_item(var, value)
658 659 660 661 662
    attrs = {
        'axes': axes,
        'starts': starts,
        'ends': ends,
        'steps': steps,
Z
zyfncg 已提交
663 664
        'decrease_axes': decrease_axes,
        'none_axes': none_axes
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
    }

    from .layers import utils
    if utils._contain_var(starts):
        inputs['StartsTensorList'] = utils._convert_to_tensor_list(starts)
        del attrs['starts']
    if utils._contain_var(ends):
        inputs['EndsTensorList'] = utils._convert_to_tensor_list(ends)
        del attrs['ends']
    if utils._contain_var(steps):
        inputs['StepsTensorList'] = utils._convert_to_tensor_list(steps)
        del attrs['steps']

    # 2. Parse value
    dtype = var.dtype
    attrs['dtype'] = dtype

    from .data_feeder import convert_dtype
    #  2.1 value is an integer of float
    if isinstance(value, (int, float)):
        value = np.array([value]).astype(convert_dtype(dtype))

    #  2.2 value is a np.ndarray
    if isinstance(value, np.ndarray):
        shape = list(value.shape)
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
W
wanghuancoder 已提交
692
            values = [int(v) for v in value.flat]
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in value.flat]
        elif dtype == core.VarDesc.VarType.FP64:
            value_name = "fp64_values"
            values = [float(v) for v in value.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in value.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in value.flat]
        else:
            raise TypeError(
                "When assign a numpy.ndarray, integer or float to a paddle.Tensor, "
                "the data type of the paddle.Tensor must be bool, float32, int32 or int64, but "
                "received %s." % convert_dtype(dtype))
        attrs[value_name] = values
        attrs["shape"] = shape

W
wanghuancoder 已提交
713
    elif isinstance(value, (Variable, core.eager.Tensor)):
714 715 716 717 718 719 720
        inputs["ValueTensor"] = value
    else:
        raise TypeError(
            "Only support to assign an integer, float, numpy.ndarray or "
            "paddle.Tensor to a paddle.Tensor, but received {}".format(
                type(value)))

721
    if paddle.fluid.framework._non_static_mode():
Z
zyfncg 已提交
722 723
        var._bump_inplace_version()

724
    cur_block = default_main_program().current_block()
725 726 727 728 729
    cur_block.append_op(type="set_value",
                        inputs=inputs,
                        outputs={'Out': var},
                        attrs=attrs,
                        inplace_map={"Input": "Out"})
730 731

    return var
Z
zyfncg 已提交
732 733


734
# the item is a tensor of bool
Z
zyfncg 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
def set_value_for_bool_tensor(var, item, value):
    if len(item.shape) > len(var.shape):
        raise IndexError("The dims of bool index doesn't match indexed array, "
                         "the dims of bool index except to be equal or less "
                         "than {}, but received {}.".format(
                             len(var.shape), len(item.shape)))
    for i, dim_len in enumerate(item.shape):
        if dim_len != var.shape[i]:
            raise IndexError(
                "The dimension of bool index doesn't match indexed array along "
                "dimension {}, the target dimension is {}, but received {}.".
                format(i, var.shape[i], dim_len))

    def idx_not_empty(var, item, value):
        from .framework import Variable
        from .layers import assign
        from .layers.nn import where
        from ..tensor import gather_nd, scatter_nd_add

        if not isinstance(value, Variable):
            value = assign(value).cast(var.dtype)

        idx = where(item)
        gather_val = gather_nd(var, idx)
        gather_val_new = value - gather_val
        out = scatter_nd_add(var, idx, gather_val_new)
        var[:] = out

    from .layers.control_flow import cond
    # If all the bool index is False, just do nothing
    cond(item.any(), lambda: idx_not_empty(var, item, value))

    return var