expand_grad_kernel_impl.h 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/pten/kernels/copy_kernel.h"
#include "paddle/pten/kernels/funcs/eigen/common.h"
#include "paddle/pten/kernels/funcs/eigen/eigen_function.h"
#include "paddle/pten/kernels/impl/expand_kernel_impl.h"

namespace pten {
template <typename Context, typename T, int Dims>
void ExpandBackward(const Context& ctx,
                    const DenseTensor& out_grad,
                    const std::vector<int>& reshape_dims_vec,
                    const std::vector<int>& reduce_dims_vec,
                    DenseTensor* in_grad) {
  size_t reshape_size = reshape_dims_vec.size();
  size_t reduce_size = reduce_dims_vec.size();
  ctx.template Alloc<T>(in_grad);
  in_grad->data<T>();

  auto x_grad = EigenVector<T>::Flatten(*in_grad);
  Eigen::DSizes<Eigen::DenseIndex, Dims * 2> reshape_dims;
  for (size_t i = 0; i < reshape_size; ++i) {
    reshape_dims[i] = reshape_dims_vec[i];
  }
  Eigen::DSizes<Eigen::DenseIndex, Dims> reduce_dims;
  for (size_t i = 0; i < reduce_size; ++i) {
    reduce_dims[i] = reduce_dims_vec[i];
  }
  auto out_grad0 = EigenVector<T>::Flatten(out_grad);
  auto& place = *ctx.eigen_device();
  pten::funcs::EigenBroadcastGrad<std::decay_t<decltype(place)>, T, Dims>::Eval(
      place, x_grad, out_grad0, reduce_dims, reshape_dims);
}

template <typename T, typename Context>
void ExpandGradKernel(const Context& ctx,
                      const DenseTensor& x,
                      const DenseTensor& out_grad,
                      const ScalarArray& shape,
                      DenseTensor* in_grad) {
  auto expand_shape = shape.GetData();
  auto x_dims = x.dims();
  auto vec_in_dims = framework::vectorize<int>(x_dims);
  auto diff = expand_shape.size() - vec_in_dims.size();
  vec_in_dims.insert(vec_in_dims.begin(), diff, 1);
  // 1. reshape_dims_vec is the broadcast parameter.
  // 2. reduce_dims_vec is the dimension parameter to compute gradients. For
  //    each dimension expanded, the gradients should be summed to original
  //    size.
  std::vector<int> repeat_times(vec_in_dims.size());
  for (size_t i = 0; i < vec_in_dims.size(); ++i) {
    if (expand_shape[i] < 0) {
      repeat_times[i] = 1;
    } else {
      repeat_times[i] = expand_shape[i] / vec_in_dims[i];
    }
  }
  std::vector<int> reshape_dims_vec;
  std::vector<int> reduce_dims_vec;
  for (size_t i = 0; i < repeat_times.size(); ++i) {
    reduce_dims_vec.push_back(reshape_dims_vec.size());
    reshape_dims_vec.push_back(repeat_times[i]);
    reshape_dims_vec.push_back(vec_in_dims[i]);
  }

  int dims = reduce_dims_vec.size();

  bool just_copy = true;
  for (size_t i = 0; i < repeat_times.size(); i++) {
    if (repeat_times[i] != 1) {
      just_copy = false;
      break;
    }
  }
  // no need reduce, just copy
  if (just_copy) {
    pten::Copy(ctx, out_grad, false, in_grad);
  } else {
    PADDLE_ENFORCE_GE(dims,
                      1,
                      pten::errors::InvalidArgument(
                          "The rank of the input 'Out@GRAD' for "
                          "expand_v2_grad op must be greater than or "
                          "equal to 1, but the value received is %d.",
                          dims));
    PADDLE_ENFORCE_LE(dims,
                      MAX_RANK_SUPPORTED,
                      pten::errors::InvalidArgument(
                          "The rank of the input 'Out@GRAD' for "
                          "expand_v2_grad op must be less than or equal "
                          "to %d, but the value received is %d.",
                          MAX_RANK_SUPPORTED,
                          dims));
    switch (dims) {
      case 1:
        ExpandBackward<Context, T, 1>(
            ctx, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad);
        break;
      case 2:
        ExpandBackward<Context, T, 2>(
            ctx, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad);
        break;
      case 3:
        ExpandBackward<Context, T, 3>(
            ctx, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad);
        break;
      case 4:
        ExpandBackward<Context, T, 4>(
            ctx, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad);
        break;
      case 5:
        ExpandBackward<Context, T, 5>(
            ctx, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad);
        break;
      case 6:
        ExpandBackward<Context, T, 6>(
            ctx, out_grad, reshape_dims_vec, reduce_dims_vec, in_grad);
        break;
      default:
        PADDLE_THROW(pten::errors::InvalidArgument(
            "Only support tensor with rank being between 1 and 6. But "
            "received tensor's rank = %d.",
            dims));
    }
  }
}

}  // namespace pten