determinant_grad_kernel_impl.h 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17 18
#include "glog/logging.h"

19
#include "paddle/phi/core/tensor_utils.h"
20
#include "paddle/phi/kernels/determinant_grad_kernel.h"
21
#include "paddle/phi/kernels/elementwise_multiply_kernel.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/full_kernel.h"
#include "paddle/phi/kernels/funcs/for_range.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/matrix_inverse.h"
#include "paddle/phi/kernels/funcs/unsqueeze.h"
#include "paddle/phi/kernels/transpose_kernel.h"

namespace phi {
namespace detail {

template <typename T>
struct FoundZeroFunctor {
  FoundZeroFunctor(const T* x, int64_t numel, bool* res)
      : x_(x), numel_(numel), res_(res) {}
  HOSTDEVICE void operator()(size_t idx) const {
    if (*res_ || idx >= static_cast<size_t>(numel_)) {
      // founded zero number
      return;
    }
    *res_ = (x_[idx] == static_cast<T>(0));
  }
  const T* x_;
  int64_t numel_;
  bool* res_;
};

template <typename T, typename Context>
inline bool CheckMatrixInvertible(const Context& dev_ctx,
                                  const DenseTensor* det) {
  auto numel = det->numel();

  DenseTensor dev_tensor = phi::Empty<bool, Context>(dev_ctx, {1});

  // set false
  phi::funcs::SetConstant<Context, bool> zero;
  zero(dev_ctx, &dev_tensor, false);

  // find whether zero
  phi::funcs::ForRange<Context> for_range(dev_ctx, numel);
  FoundZeroFunctor<T> functor(det->data<T>(), numel, dev_tensor.data<bool>());
  for_range(functor);

  // copy to host
  DenseTensor cpu_tensor;
  phi::Copy<Context>(dev_ctx, dev_tensor, phi::CPUPlace(), false, &cpu_tensor);

  // if founded zero, the matrix is not invertible
  // else the matrix is invertible
  auto* res = cpu_tensor.data<bool>();
  return !(*res);
}

}  // namespace detail

template <typename T, typename Context>
void DeterminantGradKernel(const Context& dev_ctx,
                           const DenseTensor& x,
                           const DenseTensor& out,
                           const DenseTensor& out_grad,
                           DenseTensor* x_grad) {
  auto input_dims_size = x.dims().size();
  if (input_dims_size > 2) {
    PADDLE_ENFORCE_EQ(
        out_grad.dims().size() + 2,
        input_dims_size,
        phi::errors::InvalidArgument(
            "The grad tensor of det dims size should be 2 less than"
            " input tensor's, but here differ %d",
            input_dims_size - out_grad.dims().size()));
  } else if (input_dims_size == 2) {
93
    // input dims size 2 and grad dims size 0 is possible
94 95
    PADDLE_ENFORCE_EQ(
        out_grad.dims().size(),
96
        0,
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        phi::errors::InvalidArgument(
            "The grad tensor of det dims size should be 2 less than"
            " input tensor's, but here differ %d",
            input_dims_size - out_grad.dims().size()));
  } else {
    // checked in forward, pass
  }

  // Check Whether the matrix is invertible
  // (matrix A not invertible) == (det(A)=0)
  if (!detail::CheckMatrixInvertible<T, Context>(dev_ctx, &out)) {
    // The matrix is not invertible
    VLOG(3) << "The input matrix not invertible!";
    x_grad->Resize(x.dims());
    phi::Full<T>(
        dev_ctx, phi::vectorize(x.dims()), static_cast<T>(0.0f), x_grad);
    return;
  }

  // The matrix is invertible
  // let |A| = Determinant(A)
  // Ref to https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
  // we set d|A| = unsqueeze(dA * |A|, [-1, -2]) * inverse(A).transpose(-2,
  // -1)

  // First: inverse(A)
  DenseTensor inverse_A;
  // A must be square matrices!
  inverse_A.Resize(x.dims());
  dev_ctx.template Alloc<T>(&inverse_A);

  phi::funcs::MatrixInverseFunctor<Context, T> mat_inv;
  mat_inv(dev_ctx, x, &inverse_A);

  VLOG(3) << "inverse(A) dims: " << inverse_A.dims();

  // Second: inverse(A).transpose(-2, -1)
  DenseTensor transpose_inverse_A =
      phi::TransposeLast2Dim<T>(dev_ctx, inverse_A);

  VLOG(3) << "(dA * |A|).transpose(-2, -1) dims: "
          << transpose_inverse_A.dims();

  // Third: dA * |A|
  auto mul_dA_detA = phi::Multiply<T>(dev_ctx, out_grad, out);
  VLOG(3) << "dA * |A| dims: " << mul_dA_detA.dims();

  // Fourth: unsqueeze(dA * |A|, [-1, -2])
  auto unsqueeze1 = phi::funcs::Unsqueeze(mul_dA_detA, -1);
  auto unsqueeze2 = phi::funcs::Unsqueeze(unsqueeze1, -2);
  VLOG(3) << "unsqueezed(dA * |A|) dims: " << unsqueeze2.dims();

  // Finally: unsqueeze(dA * |A|) * inverse(A)
  auto res = phi::Multiply<T>(dev_ctx, unsqueeze2, transpose_inverse_A);

  VLOG(3) << "unsqueeze(dA * |A|) * inverse(A) dims: " << res.dims();

  x_grad->Resize(x.dims());
  VLOG(3) << "d|A| dims: " << x_grad->dims();

  phi::Copy(dev_ctx, res, dev_ctx.GetPlace(), false, x_grad);
}

}  // namespace phi