light_api.h 3.3 KB
Newer Older
S
Superjomn 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/*
 * This file implements a light-weight API which can run on mobile. We limit the
 * dependencies and the runtime computation complexity.
 */
#pragma once

S
superjomn 已提交
21
#include <memory>
S
Superjomn 已提交
22
#include <string>
S
superjomn 已提交
23
#include <utility>
S
Superjomn 已提交
24 25 26 27 28 29 30 31 32
#include <vector>
#include "paddle/fluid/lite/core/program.h"
#include "paddle/fluid/lite/core/types.h"
#include "paddle/fluid/lite/model_parser/model_parser.h"
#include "paddle/fluid/lite/model_parser/pb/op_desc.h"

namespace paddle {
namespace lite {

33
class LightPredictor {
S
Superjomn 已提交
34
 public:
35
  LightPredictor() { scope_ = std::make_shared<Scope>(); }
S
Superjomn 已提交
36 37 38 39 40 41 42 43 44 45

  void Build(const std::string& model_dir) {
    framework::proto::ProgramDesc desc;
    LoadModel(model_dir, scope_.get(), &desc);
    BuildRuntimeProgram(desc);
  }

  void Run() { program_->Run(); }

  // Get offset-th col of feed.
S
superjomn 已提交
46
  Tensor* GetInput(size_t offset) {
S
Superjomn 已提交
47 48
    auto* _feed_list = program_->exec_scope()->FindVar("feed");
    CHECK(_feed_list) << "no feed variable in exec_scope";
S
superjomn 已提交
49
    auto* feed_list = _feed_list->GetMutable<std::vector<Tensor>>();
S
Superjomn 已提交
50 51 52 53 54 55
    if (offset >= feed_list->size()) {
      feed_list->resize(offset + 1);
    }
    return &feed_list->at(offset);
  }

S
superjomn 已提交
56
  const Tensor* GetOutput(size_t offset) {
S
Superjomn 已提交
57 58
    auto* _fetch_list = program_->exec_scope()->FindVar("fetch");
    CHECK(_fetch_list) << "no fatch variable in exec_scope";
S
superjomn 已提交
59
    auto& fetch_list = *_fetch_list->GetMutable<std::vector<lite::Tensor>>();
S
Superjomn 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    CHECK_LT(offset, fetch_list.size()) << "offset " << offset << " overflow";
    return &fetch_list.at(offset);
  }

 private:
  void BuildRuntimeProgram(const framework::proto::ProgramDesc& prog) {
    std::vector<Instruct> insts;
    // 1. Create op first
    Program program(prog, scope_, {});

    // 2. Create Instructs

    // Create the kernels of the target places, and filter out the specific
    // kernel with the target alias.
    for (auto& op : program.ops) {
      lite::pb::OpDesc desc(op->op_info()->desc());
      auto kernel_type = desc.GetAttr(kKernelTypeAttr).get<std::string>();
      std::string op_type, alias;
      Place place;
      KernelBase::ParseKernelType(kernel_type, &op_type, &alias, &place);
      auto kernels = op->CreateKernels({place});
      // filter out a kernel
      auto it = std::find_if(kernels.begin(), kernels.end(),
                             [&](std::unique_ptr<KernelBase>& it) {
                               return it->alias() == alias;
                             });
      CHECK(it != kernels.end());
      insts.emplace_back(op, std::move(*it));
    }
    program_.reset(new RuntimeProgram(std::move(insts)));
    CHECK(program.exec_scope);
    program_->set_exec_scope(program.exec_scope);
  }

 private:
  std::shared_ptr<Scope> scope_;
  std::unique_ptr<RuntimeProgram> program_;
};

}  // namespace lite
}  // namespace paddle