test_matmul_op.py 4.3 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
M
Markus Kliegl 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
import unittest
import numpy as np
from op_test import OpTest


def generate_compatible_shapes(dim_X, dim_Y, transpose_X, transpose_Y):
    BATCH_SIZE = 2
    M = 3
    N = 4
    K = 5
    if (dim_X == 1 and transpose_X) or (dim_Y == 1 and transpose_Y):
        K = 1
    if dim_X == 1:
        if transpose_X:
            shape_X = [M]
        else:
            shape_X = [K]
    if dim_Y == 1:
        if transpose_Y:
            shape_Y = [N]
        else:
            shape_Y = [K]
    if dim_X >= 2:
        if transpose_X:
            shape_X = [K, M]
        else:
            shape_X = [M, K]
    if dim_X == 3:
        shape_X = [BATCH_SIZE] + shape_X
    if dim_Y >= 2:
        if transpose_Y:
            shape_Y = [N, K]
        else:
            shape_Y = [K, N]
    if dim_Y == 3:
        shape_Y = [BATCH_SIZE] + shape_Y
    return shape_X, shape_Y


def reference_matmul(X, Y, transpose_X=False, transpose_Y=False):
    """Reference forward implementation using np.matmul."""
    # np.matmul does not support the transpose flags, so we manually
    # transpose X and Y appropriately.
    if transpose_X:
        if X.ndim == 1:
            X = X.reshape((X.size, 1))
        elif X.ndim == 2:
            X = X.T
        elif X.ndim == 3:
            X = np.transpose(X, (0, 2, 1))
        else:
            raise ValueError('X must have between 1 and 3 dimensions')
    if transpose_Y:
        if Y.ndim == 1:
            Y = Y.reshape((1, Y.size))
        elif Y.ndim == 2:
            Y = Y.T
        elif Y.ndim == 3:
            Y = np.transpose(Y, (0, 2, 1))
        else:
            raise ValueError('Y must have between 1 and 3 dimensions')
    Out = np.matmul(X, Y)
    if not Out.shape:
        # We do not support 0-dimensional Tensors (scalars). So where
        # np.matmul outputs a scalar, we must convert to a Tensor of
        # shape (1, ) instead.
        # Everywhere else, we are compatible with np.matmul.
        Out = np.array([Out], dtype="float32")
    return Out


class Generator(object):
    def setUp(self):
        self.op_type = "matmul"
        X = np.random.random(self.shape_X).astype("float32")
        Y = np.random.random(self.shape_Y).astype("float32")
        Out = reference_matmul(X, Y, self.transpose_X, self.transpose_Y)
        self.inputs = {'X': X, 'Y': Y}
        self.attrs = {
            'transpose_X': self.transpose_X,
            'transpose_Y': self.transpose_Y
        }
        self.outputs = {'Out': Out}

    def test_check_output(self):
99
        self.check_output(atol=1e-3)
M
Markus Kliegl 已提交
100 101

    def test_check_grad_normal(self):
102
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=1e-3)
M
Markus Kliegl 已提交
103 104 105

    def test_check_grad_ignore_x(self):
        self.check_grad(
106
            ['Y'], 'Out', max_relative_error=1e-3, no_grad_set=set("X"))
M
Markus Kliegl 已提交
107 108 109

    def test_check_grad_ignore_y(self):
        self.check_grad(
110
            ['X'], 'Out', max_relative_error=1e-3, no_grad_set=set('Y'))
M
Markus Kliegl 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132


# Generate test cases for all possibilities
for dim_X in [1, 2, 3]:
    for dim_Y in [1, 2, 3]:
        for transpose_X in [False, True]:
            for transpose_Y in [False, True]:
                test_name = (
                    'TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
                        dim_X, dim_Y, transpose_X, transpose_Y))
                shape_X, shape_Y = generate_compatible_shapes(
                    dim_X, dim_Y, transpose_X, transpose_Y)
                test_class = type(test_name, (Generator, OpTest), {
                    'shape_X': shape_X,
                    'shape_Y': shape_Y,
                    'transpose_X': transpose_X,
                    'transpose_Y': transpose_Y,
                })
                globals()[test_name] = test_class

if __name__ == "__main__":
    unittest.main()