elementwise_max_op.h 4.4 KB
Newer Older
F
wip  
fengjiayi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/operators/elementwise_op_function.h"

namespace paddle {
namespace operators {

template <typename T>
struct MaxFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a > b ? a : b; }
};

template <typename DeviceContext, typename T>
class ElementwiseMaxKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
F
fengjiayi 已提交
31
    ElementwiseComputeEx<MaxFunctor<T>, DeviceContext, T>(ctx);
F
wip  
fengjiayi 已提交
32 33 34 35
  }
};

template <typename T>
F
fengjiayi 已提交
36
struct ElementwiseMaxGradFunctor {
F
wip  
fengjiayi 已提交
37 38 39 40 41
  template <typename Device, typename X, typename Y, typename Z, typename dX,
            typename dY, typename dZ>
  void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto y_e = framework::EigenVector<T>::Flatten(*y);
F
fengjiayi 已提交
42
    auto dz_e = framework::EigenVector<T>::Flatten(*dz);
F
wip  
fengjiayi 已提交
43 44 45

    if (dx) {
      auto dx_e = framework::EigenVector<T>::Flatten(*dx);
F
fengjiayi 已提交
46
      dx_e.device(d) = (x_e > y_e).template cast<T>() * dz_e;
F
wip  
fengjiayi 已提交
47 48 49
    }
    if (dy) {
      auto dy_e = framework::EigenVector<T>::Flatten(*dy);
F
fengjiayi 已提交
50
      dy_e.device(d) = (x_e <= y_e).template cast<T>() * dz_e;
F
wip  
fengjiayi 已提交
51 52 53 54 55
    }
  }
};

template <typename T>
F
fengjiayi 已提交
56
struct ElementwiseMaxBroadCastGradFunctor {
F
wip  
fengjiayi 已提交
57
  template <typename Device, typename X, typename Y, typename Z, typename dX,
F
fengjiayi 已提交
58 59 60 61
            typename dY, typename dZ, typename Pre, typename N>
  void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto y_e = framework::EigenVector<T>::Flatten(*y);
F
wip  
fengjiayi 已提交
62
    auto dz_e = framework::EigenVector<T>::Flatten(*dz);
F
fengjiayi 已提交
63 64 65 66 67 68 69 70 71 72 73 74

    auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
                         .broadcast(Eigen::DSizes<int, 2>(pre, 1))
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));

    if (dx) {
      auto dx_e = framework::EigenVector<T>::Flatten(*dx);
      dx_e.device(d) = (x_e > y_e_bcast).template cast<T>() * dz_e;
    }

    if (dy) {
      auto dy_e = framework::EigenVector<T>::Flatten(*dy);
F
fengjiayi 已提交
75
      dy_e.device(d) = ((x_e <= y_e_bcast).template cast<T>() * dz_e)
F
fengjiayi 已提交
76 77 78 79 80 81 82 83 84 85 86 87
                           .reshape(Eigen::DSizes<int, 2>(pre, n))
                           .sum(Eigen::array<int, 1>{{0}});
    }
  }
};

template <typename T>
struct ElementwiseMaxBroadCast2GradFunctor {
  template <typename Device, typename X, typename Y, typename Z, typename dX,
            typename dY, typename dZ, typename Pre, typename N, typename Post>
  void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
                  Post post) {
F
wip  
fengjiayi 已提交
88 89
    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto y_e = framework::EigenVector<T>::Flatten(*y);
F
fengjiayi 已提交
90 91 92 93 94
    auto dz_e = framework::EigenVector<T>::Flatten(*dz);

    auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
                         .broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));
F
wip  
fengjiayi 已提交
95 96
    if (dx) {
      auto dx_e = framework::EigenVector<T>::Flatten(*dx);
F
fengjiayi 已提交
97
      dx_e.device(d) = (x_e > y_e_bcast).template cast<T>() * dz_e;
F
wip  
fengjiayi 已提交
98
    }
F
fengjiayi 已提交
99

F
wip  
fengjiayi 已提交
100 101
    if (dy) {
      auto dy_e = framework::EigenVector<T>::Flatten(*dy);
F
fengjiayi 已提交
102
      dy_e.device(d) = ((x_e <= y_e_bcast).template cast<T>() * dz_e)
F
fengjiayi 已提交
103 104
                           .reshape(Eigen::DSizes<int, 3>(pre, n, post))
                           .sum(Eigen::array<int, 2>{{0, 2}});
F
wip  
fengjiayi 已提交
105 106 107 108
    }
  }
};

F
fengjiayi 已提交
109 110 111 112 113 114 115 116 117 118
template <typename DeviceContext, typename T>
class ElementwiseMaxGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    ElementwiseGradCompute<DeviceContext, T, ElementwiseMaxGradFunctor<T>,
                           ElementwiseMaxBroadCastGradFunctor<T>,
                           ElementwiseMaxBroadCast2GradFunctor<T>>(ctx);
  }
};

F
wip  
fengjiayi 已提交
119 120
}  // namespace operators
}  // namespace paddle