unary.cc 28.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/infermeta/unary.h"
16

L
Linjie Chen 已提交
17
#include <algorithm>
18
#include <set>
19
#include "paddle/phi/common/data_type.h"
20
#include "paddle/phi/core/enforce.h"
21
#include "paddle/phi/core/infermeta_utils.h"
22
#include "paddle/phi/kernels/funcs/unfold_functor.h"
23

24
namespace phi {
25

26 27
void UnchangedInferMeta(const MetaTensor& x, MetaTensor* out) {
  out->share_meta(x);
28 29
}

F
From00 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
// meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1]
void UnchangedInferMetaCheckAxis(const MetaTensor& x,
                                 int axis,
                                 MetaTensor* out) {
  auto rank = x.dims().size();
  PADDLE_ENFORCE_GE(
      axis,
      -rank,
      errors::InvalidArgument(
          "Attr(axis) value should be in range [-R, R-1], "
          "R is the rank of Input(X). But received axis: %d, R: %d.",
          axis,
          rank));
  PADDLE_ENFORCE_LT(
      axis,
      rank,
      phi::errors::InvalidArgument(
          "Attr(axis) value should be in range [-R, R-1], "
          "R is the rank of Input(X). But received axis: %d, R: %d.",
          axis,
          rank));
  out->share_meta(x);
}

54 55 56 57 58
void FlattenInferMeta(const MetaTensor& x,
                      int start_axis,
                      int stop_axis,
                      MetaTensor* out) {
  auto x_dims = x.dims();
59 60 61 62 63 64 65
  int in_dims_size = x_dims.size();
  if (start_axis < 0) {
    start_axis = start_axis + in_dims_size;
  }
  if (stop_axis < 0) {
    stop_axis = stop_axis + in_dims_size;
  }
66 67 68 69 70
  PADDLE_ENFORCE_GE(
      stop_axis,
      start_axis,
      phi::errors::InvalidArgument("The stop_axis should be greater"
                                   "than or equal to start_axis."));
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

  int64_t outer = 1;
  std::vector<int32_t> out_shape;
  out_shape.reserve(in_dims_size - stop_axis + start_axis);

  for (int i = 0; i < start_axis; ++i) {
    out_shape.push_back(x_dims[i]);
  }
  for (int i = start_axis; i <= stop_axis; i++) {
    if (x_dims[i] == -1 || outer == -1) {
      outer = -1;
    } else {
      outer *= x_dims[i];
    }
  }
  out_shape.push_back(outer);
  for (int i = stop_axis + 1; i < in_dims_size; i++) {
    out_shape.push_back(x_dims[i]);
  }
90
  const auto& out_dims = phi::make_ddim(out_shape);
91 92 93
  out->set_dims(out_dims);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
94

95
  if (x_dims[0] == out_dims[0]) {
96 97
    // Only pass LoD when the first dimension of output and Input(X)
    // are the same.
98
    out->share_lod(x);
99 100 101
  }
}

F
From00 已提交
102 103 104 105 106 107 108 109
void GumbelSoftmaxInferMeta(const MetaTensor& x,
                            float temperature,
                            bool hard,
                            int axis,
                            MetaTensor* out) {
  UnchangedInferMetaCheckAxis(x, axis, out);
}

110 111 112 113
void CastInferMeta(const MetaTensor& x, DataType out_dtype, MetaTensor* out) {
  out->set_dims(x.dims());
  out->set_dtype(out_dtype);
  out->set_layout(x.layout());
114 115
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
void CholeskyInferMeta(const MetaTensor& x, bool upper, MetaTensor* out) {
  auto dims = x.dims();
  auto rank = dims.size();
  PADDLE_ENFORCE_GE(rank,
                    2,
                    errors::InvalidArgument(
                        "The Input(X) should have at least 2 dimensions. But "
                        "received a %d dimension tensor.",
                        rank));
  PADDLE_ENFORCE_EQ(
      dims[rank - 2],
      dims[rank - 1],
      errors::InvalidArgument(
          "The inner-most 2 dimensions of Input(X) all should be symmetric "
          "positive-definite matrices and have the same size. But received "
          "X's shape[-2] = %d and shape[-1] = %d.",
          dims[rank - 2],
          dims[rank - 1]));
  out->set_dims(x.dims());
  out->set_dtype(x.dtype());
}

138 139 140 141 142 143 144
void CopyToInferMeta(const MetaTensor& x,
                     Backend backend,
                     bool blocking,
                     MetaTensor* out) {
  UnchangedInferMeta(x, out);
}

145
void CreateLikeInferMeta(const MetaTensor& x, DataType dtype, MetaTensor* out) {
146 147
  out->set_dims(x.dims());
  out->set_dtype(dtype == DataType::UNDEFINED ? x.dtype() : dtype);
148
  out->set_layout(x.layout());
149 150
}

151 152 153 154 155 156 157 158 159 160 161 162
void IncrementInferMeta(const MetaTensor& x, float value, MetaTensor* out) {
  PADDLE_ENFORCE_EQ(
      product(x.dims()),
      1UL,
      errors::InvalidArgument("The number of elements in Input(X) should be 1."
                              "Now the number is %d.",
                              product(x.dims())));
  out->set_dims(x.dims());
  out->share_lod(x);
  out->set_dtype(x.dtype());
}

163 164 165 166
static phi::DDim ValidateShape(const std::vector<int64_t> shape,
                               const phi::DDim& in_dims) {
  const int64_t in_size = phi::product(in_dims);
  auto in_dims_vec = phi::vectorize(in_dims);
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
  bool all_positive = std::all_of(in_dims_vec.cbegin(),
                                  in_dims_vec.cend(),
                                  [](int64_t i) { return i > 0; });
  // only one dimension can be set to -1, whose size will be automatically
  // infered.
  const int64_t unk_dim_val = -1;
  const int64_t copy_dim_val = 0;

  std::vector<int64_t> output_shape(shape.size(), 0);
  int64_t capacity = 1;
  int unk_dim_idx = -1;
  for (size_t i = 0; i < shape.size(); ++i) {
    if (shape[i] == unk_dim_val) {
      PADDLE_ENFORCE_EQ(
          unk_dim_idx,
          -1,
183
          phi::errors::InvalidArgument(
184 185
              "Only one dimension value of 'shape' in ReshapeOp can "
              "be -1. But received shape = [%s], shape[%d] is also -1.",
186
              phi::make_ddim(shape),
187 188 189 190 191 192
              i));
      unk_dim_idx = i;
    } else if (shape[i] == copy_dim_val) {
      PADDLE_ENFORCE_LT(
          static_cast<int>(i),
          in_dims.size(),
193
          phi::errors::InvalidArgument(
194 195 196 197
              "The index of 0 in `shape` must be less than "
              "the input tensor X's dimensions. "
              "But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
              "X's dimensions = %d.",
198
              phi::make_ddim(shape),
199 200 201 202 203 204 205
              i,
              in_dims,
              in_dims.size()));
    } else {
      PADDLE_ENFORCE_GT(
          shape[i],
          0,
206
          phi::errors::InvalidArgument(
207 208 209
              "Each dimension value of 'shape' in ReshapeOp must not "
              "be negative except one unknown dimension. "
              "But received  shape = [%s], shape[%d] = %d.",
210
              phi::make_ddim(shape),
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
              i,
              shape[i]));
    }

    // NOTE all non-zero values will be converted to True (include negative
    // value)
    capacity *= (shape[i] ? shape[i] : in_dims[i]);
    output_shape[i] = (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
  }

  if (unk_dim_idx != -1) {
    if (all_positive) {
      // in_size < 0 and is un-determinate in compile time, skip the check,
      // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
      // capacity = -24, in_size = -8, output_shape[0] = 0
      // the following check will fail.
      output_shape[unk_dim_idx] = -in_size / capacity;
      PADDLE_ENFORCE_EQ(
          output_shape[unk_dim_idx] * capacity,
          -in_size,
231
          phi::errors::InvalidArgument(
232 233 234 235 236 237 238
              "The 'shape' attribute in ReshapeOp is invalid. "
              "The input tensor X'size must be divisible by known "
              "capacity of 'shape'. "
              "But received X's shape = [%s], X's size = %d, "
              "'shape' is [%s], known capacity of 'shape' is %d.",
              in_dims,
              in_size,
239
              phi::make_ddim(shape),
240 241 242 243 244 245 246 247 248
              capacity));
    } else {
      output_shape[unk_dim_idx] = -1;
    }
  } else {
    if (all_positive) {
      PADDLE_ENFORCE_EQ(
          capacity,
          in_size,
249
          phi::errors::InvalidArgument(
250 251 252 253 254 255 256
              "The 'shape' in ReshapeOp is invalid. "
              "The input tensor X'size must be equal to the capacity of "
              "'shape'. "
              "But received X's shape = [%s], X's size = %d, 'shape' is "
              "[%s], the capacity of 'shape' is %d.",
              in_dims,
              in_size,
257
              phi::make_ddim(shape),
258 259 260 261 262 263 264 265 266 267 268
              capacity));
    }
  }

  // support reshape with zero-input(input tensor with product(shape) == 0)
  // by now we require that if the input tensor is zero shape, the target
  // shape of output must be zero
  if (in_size == 0) {
    PADDLE_ENFORCE_LE(
        capacity,
        in_size,
269
        phi::errors::InvalidArgument(
270 271 272 273 274 275
            "The 'shape' in ReshapeOp is invalid. "
            "The input tensor X's shape = [%s], X's capacity = %d."
            "But the target shape of Out is [%s],  the "
            "capacity of 'Out' is %d.",
            in_dims,
            in_size,
276
            phi::make_ddim(shape),
277 278 279
            capacity));
  }

280
  return phi::make_ddim(output_shape);
281 282
}

283 284 285
void InferMetaFromVecValue(const MetaTensor& x,
                           const std::vector<int64_t>& shape,
                           MetaTensor* out) {
286 287
  PADDLE_ENFORCE_EQ(!shape.empty(),
                    true,
288
                    phi::errors::InvalidArgument(
289 290
                        "The parameter 'shape' in ReshapeOp must be set. "
                        "But received 'shape' is empty."));
291
  auto x_dims = x.dims();
292
  auto out_dims = ValidateShape(shape, x_dims);
293 294 295 296
  out->set_dims(out_dims);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
  if (x_dims[0] == out_dims[0]) {
297 298
    // Only pass LoD when the first dimension of output and Input(X)
    // are the same.
299
    out->share_lod(x);
300 301 302
  }
}

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
void MultinomialInferMeta(const MetaTensor& x,
                          int num_samples,
                          bool replacement,
                          MetaTensor* out) {
  auto x_dim = x.dims();
  int64_t x_rank = x_dim.size();
  PADDLE_ENFORCE_GT(x_rank,
                    0,
                    errors::InvalidArgument(
                        "The number of dimensions of the input probability "
                        "distribution should be > 0, but got %d.",
                        x_rank));
  PADDLE_ENFORCE_LE(x_rank,
                    2,
                    errors::InvalidArgument(
                        "The number of dimensions of the input probability "
                        "distribution should be <= 2, but got %d.",
                        x_rank));

  std::vector<int64_t> out_dims(x_rank);
  for (int64_t i = 0; i < x_rank - 1; i++) {
    out_dims[i] = x_dim[i];
  }

  PADDLE_ENFORCE_GT(
      num_samples,
      0,
      errors::InvalidArgument(
          "The number of samples should be > 0, but got %d.", num_samples));
  out_dims[x_rank - 1] = num_samples;

  out->set_dims(make_ddim(out_dims));
  out->set_dtype(DataType::INT64);
}

338 339
void ReshapeInferMeta(const MetaTensor& x,
                      const ScalarArray& shape,
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
                      MetaTensor* out,
                      MetaConfig config) {
  auto& shape_data = shape.GetData();
  PADDLE_ENFORCE_NOT_NULL(out,
                          phi::errors::InvalidArgument(
                              "Output(Out) of ReshapeOp should not be null."));
  if (!config.is_runtime && shape.FromTensor()) {
    out->set_dims(phi::make_ddim(shape_data));
    out->share_lod(x);
    return;
  }
  PADDLE_ENFORCE_GT(shape_data.size(),
                    0,
                    phi::errors::InvalidArgument(
                        "The shape's size in ReshapeOp can't be zero."));
  InferMetaFromVecValue(x, shape_data, out);
}

void ReshapeWithXShapeInferMeta(const MetaTensor& x,
                                const ScalarArray& shape,
                                MetaTensor* xshape,
                                MetaTensor* out,
                                MetaConfig config) {
  PADDLE_ENFORCE_NOT_NULL(
      xshape,
      phi::errors::InvalidArgument(
          "Output(XShape) of ReshapeOp should not be null."));
  const auto& x_dims = x.dims();
  std::vector<int64_t> xshape_dims(x_dims.size() + 1);
  xshape_dims[0] = 0;
  for (int i = 0; i < x_dims.size(); ++i) {
    xshape_dims[i + 1] = x_dims[i];
  }
  xshape->set_dims(phi::make_ddim(xshape_dims));
  xshape->share_lod(x);
  ReshapeInferMeta(x, shape, out, config);
376 377
}

378 379 380
/*  Why not use ReduceInferMeta directly?
    Because we need make InferMetaFunction's args follow the design of api.yaml
*/
381 382 383 384 385
void SumInferMeta(const MetaTensor& x,
                  const std::vector<int64_t>& axis,
                  DataType dtype,
                  bool keep_dim,
                  MetaTensor* out) {
386
  ReduceInferMetaBase(x, axis, keep_dim, dtype, out);
387 388
}

389 390 391 392 393
void ReduceInferMetaBase(const MetaTensor& x,
                         const std::vector<int64_t>& axis,
                         bool keep_dim,
                         DataType dtype,
                         MetaTensor* out) {
394 395
  bool reduce_all = true;
  std::set<int64_t> dims_set(axis.begin(), axis.end());
396
  for (int64_t i = 0; i < x.dims().size(); ++i) {
397 398 399 400 401 402 403 404
    if (dims_set.find(i) == dims_set.end()) {
      reduce_all = false;
      break;
    }
  }

  std::vector<int64_t> out_dim_vector;
  if (keep_dim) {
405
    for (int64_t i = 0; i < x.dims().size(); ++i) {
406 407 408
      if (reduce_all || dims_set.find(i) != dims_set.end()) {
        out_dim_vector.push_back(1);
      } else {
409
        out_dim_vector.push_back(x.dims().at(i));
410 411 412
      }
    }
  } else {
413
    for (int64_t i = 0; i < x.dims().size(); ++i) {
414 415 416
      if (reduce_all || dims_set.find(i) != dims_set.end()) {
        continue;
      } else {
417
        out_dim_vector.push_back(x.dims().at(i));
418 419 420 421 422 423 424
      }
    }

    if (out_dim_vector.size() == 0) {
      out_dim_vector.push_back(1);
    }
  }
425
  DDim out_dim = phi::make_ddim(out_dim_vector);
426

427 428 429 430
  DataType out_dtype;
  if (dtype != DataType::UNDEFINED) {
    out_dtype = dtype;
  } else {
431 432
    if (x.dtype() == DataType::BOOL || x.dtype() == DataType::INT32 ||
        x.dtype() == DataType::INT64) {
433 434
      out_dtype = DataType::INT64;
    } else {
435
      out_dtype = x.dtype();
436
    }
437 438
  }

439 440 441 442 443 444 445 446 447
  out->set_dims(out_dim);
  out->set_dtype(out_dtype);
  out->set_layout(x.layout());
}

void ReduceInferMeta(const MetaTensor& x,
                     const std::vector<int64_t>& axis,
                     bool keep_dim,
                     MetaTensor* out) {
448
  ReduceInferMetaBase(x, axis, keep_dim, DataType::UNDEFINED, out);
449 450
}

451 452 453 454 455 456 457 458
void TransferLayoutInferMeta(const MetaTensor& x,
                             DataLayout layout,
                             MetaTensor* out) {
  out->set_dims(x.dims());
  out->set_dtype(x.dtype());
  out->set_layout(layout);
}

C
chentianyu03 已提交
459 460 461 462 463 464 465 466 467 468
void SplitInferMeta(const MetaTensor& x,
                    const ScalarArray& num_or_sections,
                    const Scalar& axis,
                    std::vector<MetaTensor>* out,
                    MetaConfig config) {
  int axis_value = axis.to<int>();
  int rank = x.dims().size();
  PADDLE_ENFORCE_EQ(
      axis_value >= -rank && axis_value < rank,
      true,
469
      phi::errors::InvalidArgument(
C
chentianyu03 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
          "The axis is expected to be in range of [%d, %d), but got %d",
          -rank,
          rank,
          axis_value));
  if (axis_value < 0) {
    axis_value = axis_value + rank;
  }

  auto input_axis_dim = x.dims().at(axis_value);
  auto num_or_sections_data = num_or_sections.GetData();
  // step1: get formated sections
  std::vector<int64_t> sections;
  // num_or_sections is a number
  if (num_or_sections_data.size() == 1) {
    int num = num_or_sections_data.at(0);

    PADDLE_ENFORCE_EQ(input_axis_dim % num,
                      0,
488
                      phi::errors::InvalidArgument(
C
chentianyu03 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
                          "The input's size along the split dimension "
                          "must be evenly divisible by Attr(num_or_sections). "
                          "But received Attr(num_or_sections) "
                          "= %d, input(X)'s shape = [%s], Attr(dim) = %d.",
                          num,
                          x.dims(),
                          axis_value));

    for (int i = 0; i < num; ++i) {
      sections.push_back(input_axis_dim / num);
    }
  } else {
    // num_or_sections is a sections
    const int unknow_dim_val = -1;
    int unknow_dim_idx = -1;
    int num_of_unknow = 0;
    int sum_of_section = 0;

    for (size_t i = 0; i < num_or_sections_data.size(); ++i) {
      sections.push_back(num_or_sections_data[i]);

      if (num_or_sections_data[i] == unknow_dim_val) {
        num_of_unknow++;
        unknow_dim_idx = i;
      } else {
        sum_of_section += num_or_sections_data[i];
      }
    }

    if (config.is_runtime) {
      PADDLE_ENFORCE_LE(num_of_unknow,
                        1,
521
                        phi::errors::InvalidArgument(
C
chentianyu03 已提交
522 523 524
                            "Only one dimension value of Attr(num_or_sections) "
                            "in SplitOp can be -1. "
                            "But received Attr(num_or_sections) = [%s].",
525
                            phi::make_ddim(num_or_sections_data)));
C
chentianyu03 已提交
526 527 528 529 530 531 532 533 534
    }

    if (unknow_dim_idx != -1) {
      // for example, input shape = [4 ,5], axis = 1, sections = [2, 3, -1].
      // input_axis_dim = 5, sum_of_sections = 5.
      // the following check will fail.
      PADDLE_ENFORCE_LT(
          sum_of_section,
          input_axis_dim,
535
          phi::errors::InvalidArgument(
C
chentianyu03 已提交
536 537 538 539 540
              "Sum of Attr(num_or_sections) other than unknown section "
              "must be less than the input's "
              "size "
              "along the split dimension. But received Attr(num_or_sections) "
              "= [%s], input(X)'s shape = [%s], Attr(dim) = %d.",
541
              phi::make_ddim(num_or_sections_data),
C
chentianyu03 已提交
542 543 544 545 546 547 548 549 550 551
              x.dims(),
              axis_value));

      if (config.is_runtime) {
        sections[unknow_dim_idx] = input_axis_dim - sum_of_section;
      }
    } else {
      PADDLE_ENFORCE_EQ(
          sum_of_section,
          input_axis_dim,
552
          phi::errors::InvalidArgument(
C
chentianyu03 已提交
553 554 555 556
              "Sum of Attr(num_or_sections) must be equal to the input's "
              "size "
              "along the split dimension. But received Attr(num_or_sections)"
              " = [%s], input(X)'s shape = [%s], Attr(dim) = %d.",
557
              phi::make_ddim(num_or_sections_data),
C
chentianyu03 已提交
558 559 560 561 562 563
              x.dims(),
              axis_value));
    }
  }

  // setp2: fill out dims
564
  std::vector<phi::DDim> out_dims(sections.size(), x.dims());
C
chentianyu03 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
  if (config.is_runtime || input_axis_dim > 0) {
    for (size_t i = 0; i < sections.size(); ++i) {
      out_dims[i][axis_value] = sections[i];
    }
  } else {
    for (size_t i = 0; i < sections.size(); ++i) {
      out_dims[i][axis_value] = -1;
    }
  }

  for (size_t i = 0; i < sections.size(); ++i) {
    if (axis_value != 0) {
      // Only pass LoD when not spliting along the first dim.
      (*out)[i].set_dtype(x.dtype());
      (*out)[i].set_dims(out_dims[i]);
      (*out)[i].set_layout(x.layout());
    } else {
      (*out)[i].set_dtype(x.dtype());
      (*out)[i].set_dims(out_dims[i]);
      (*out)[i].set_layout(x.layout());
      (*out)[i].share_lod(x);
    }
  }
C
Chen Weihang 已提交
588 589
}

L
Leo Chen 已提交
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
void UnbindInferMeta(const MetaTensor& x,
                     int axis,
                     std::vector<MetaTensor>* outs) {
  auto in_dims = x.dims();
  std::vector<int> out_dim;
  axis = axis < 0 ? in_dims.size() + axis : axis;
  for (int i = 0; i < in_dims.size(); ++i) {
    if (i != axis) out_dim.push_back(in_dims[i]);
  }
  auto out_dims = phi::make_ddim(out_dim);

  for (size_t i = 0; i < outs->size(); ++i) {
    (*outs)[i].set_dtype(x.dtype());
    (*outs)[i].set_dims(out_dims);
    (*outs)[i].set_layout(x.layout());
    (*outs)[i].share_lod(x);
  }
}

C
Chen Weihang 已提交
609 610 611 612 613 614
void TraceInferMeta(
    const MetaTensor& x, int offset, int axis1, int axis2, MetaTensor* out) {
  int dim1 = axis1;
  int dim2 = axis2;

  auto x_dims = x.dims();
C
chentianyu03 已提交
615

C
Chen Weihang 已提交
616 617 618 619 620 621
  int dim1_ = dim1 < 0 ? x_dims.size() + dim1 : dim1;
  int dim2_ = dim2 < 0 ? x_dims.size() + dim2 : dim2;

  PADDLE_ENFORCE_GE(
      x_dims.size(),
      2,
622
      phi::errors::OutOfRange(
C
Chen Weihang 已提交
623 624 625 626 627
          "Input's dim is out of range (expected at least 2, but got %ld).",
          x_dims.size()));
  PADDLE_ENFORCE_LT(
      dim1_,
      x_dims.size(),
628
      phi::errors::OutOfRange(
C
Chen Weihang 已提交
629 630 631 632 633 634 635 636
          "Attr(dim1) is out of range (expected to be in range of [%ld, "
          "%ld], but got %ld).",
          -(x_dims.size()),
          (x_dims.size() - 1),
          dim1));
  PADDLE_ENFORCE_LT(
      dim2_,
      x_dims.size(),
637
      phi::errors::OutOfRange(
C
Chen Weihang 已提交
638 639 640 641 642 643 644 645
          "Attr(dim2) is out of range (expected to be in range of [%ld, "
          "%ld], but got %ld).",
          -(x_dims.size()),
          (x_dims.size() - 1),
          dim2));
  PADDLE_ENFORCE_NE(
      dim1_,
      dim2_,
646 647 648 649
      phi::errors::InvalidArgument("The dimensions should not be identical "
                                   "%ld vs %ld.",
                                   dim1,
                                   dim2));
C
Chen Weihang 已提交
650 651 652 653 654 655 656 657 658

  auto sizes = vectorize(x_dims);
  if (x_dims.size() == 2) {
    sizes.clear();
    sizes.push_back(1);
  } else {
    sizes.erase(sizes.begin() + std::max(dim1_, dim2_));
    sizes.erase(sizes.begin() + std::min(dim1_, dim2_));
  }
659
  out->set_dims(phi::make_ddim(sizes));
C
chentianyu03 已提交
660 661
}

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
void UnfoldInferMeta(const MetaTensor& x,
                     const std::vector<int>& kernel_sizes,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations,
                     MetaTensor* out,
                     MetaConfig config) {
  auto in_dims = x.dims();
  // Only [N, C, H, W] input supported now
  PADDLE_ENFORCE_EQ(
      in_dims.size(),
      4,
      phi::errors::InvalidArgument(
          "Input should be 4-D tensor of format [N, C, H, W], but get %u",
          in_dims.size()));
  PADDLE_ENFORCE_EQ(
      in_dims.size() - kernel_sizes.size(),
      2U,
      phi::errors::InvalidArgument(
          "The dims of X should be larger than that of kernel_sizes "
          "by a number of 2, due to the batch size and input channel dim. "
          "But recieved dims(X:%u) - dims(kernel_sizes:%u) != 2",
          in_dims.size(),
          kernel_sizes.size()));
  PADDLE_ENFORCE_EQ(
      strides.size(),
      kernel_sizes.size(),
      phi::errors::InvalidArgument(
          "The dims of strides should be the same with that of kernel_sizes. "
          "But recieved dims(strides: %u) != dims(kernel_sizes: %u).",
          strides.size(),
          kernel_sizes.size()));
  PADDLE_ENFORCE_EQ(
      paddings.size(),
      2 * strides.size(),
      phi::errors::InvalidArgument(
          "The dims of paddings should be 2 times of that of strides. "
          "But recieved dims(paddings: %u) != 2*dims(strides: %u).",
          paddings.size(),
          strides.size()));
  PADDLE_ENFORCE_EQ(
      strides.size(),
      dilations.size(),
      phi::errors::InvalidArgument(
          "The dims of strides should be the same with that of dilations. "
          "But recieved dims(strides: %u) != dims(dilations: %u).",
          strides.size(),
          dilations.size()));

  // check kernel_sizes
  PADDLE_ENFORCE_GT(kernel_sizes[0],
                    0,
                    phi::errors::InvalidArgument(
                        "The `kernel_sizes` should be greater than zero, "
                        "but recieved kernel_height: %d kernel_width: %d.",
                        kernel_sizes[0],
                        kernel_sizes[1]));
  PADDLE_ENFORCE_GT(kernel_sizes[1],
                    0,
                    phi::errors::InvalidArgument(
                        "The `kernel_sizes` should be greater than zero, "
                        "but recieved kernel_height: %d kernel_width: %d.",
                        kernel_sizes[0],
                        kernel_sizes[1]));
  // check strides
  PADDLE_ENFORCE_GT(strides[0],
                    0,
                    phi::errors::InvalidArgument(
                        "The `strides` should be greater than zero, "
                        "but recieved strides_height: %d strides_width: %d.",
                        strides[0],
                        strides[1]));
  PADDLE_ENFORCE_GT(strides[1],
                    0,
                    phi::errors::InvalidArgument(
                        "The `strides` should be greater than zero, "
                        "but recieved strides_height: %d strides_width: %d.",
                        strides[0],
                        strides[1]));
  // check dilations
  PADDLE_ENFORCE_GT(
      dilations[0],
      0,
      phi::errors::InvalidArgument(
          "The `dilations` should be greater than zero, "
          "but recieved dilations_height: %d dilations_width: %d.",
          dilations[0],
          dilations[1]));
  PADDLE_ENFORCE_GT(
      dilations[1],
      0,
      phi::errors::InvalidArgument(
          "The `dilations` should be greater than zero, "
          "but recieved dilations_height: %d dilations_width: %d.",
          dilations[0],
          dilations[1]));

  std::vector<int> out_dims;
  out_dims.push_back(in_dims[0]);
  int output_channels = in_dims[1] * kernel_sizes[0] * kernel_sizes[1];
  out_dims.push_back(output_channels);

  int output_height = phi::funcs::CalcOutputSize(in_dims[2],
                                                 kernel_sizes[0],
                                                 dilations[0],
                                                 paddings[0],
                                                 paddings[2],
                                                 strides[0]);
  int output_width = phi::funcs::CalcOutputSize(in_dims[3],
                                                kernel_sizes[1],
                                                dilations[1],
                                                paddings[1],
                                                paddings[3],
                                                strides[1]);
  if (config.is_runtime) {
    // only check output height and width in runtime
    PADDLE_ENFORCE_GT(
        output_height,
        0,
        phi::errors::InvalidArgument(
            "The sliding blocks calculated from input spatial size "
            "(%d, %d), kernel_sizes (%d, %d), strides (%d, %d), "
            "dilations (%d, %d), is (%d, %d), which should be a "
            "positive integer.",
            in_dims[2],
            in_dims[3],
            kernel_sizes[0],
            kernel_sizes[1],
            strides[0],
            strides[1],
            dilations[0],
            dilations[1],
            output_height,
            output_width));
    PADDLE_ENFORCE_GT(
        output_width,
        0,
        phi::errors::InvalidArgument(
            "The sliding blocks calculated from input spatial size "
            "(%d, %d), kernel_sizes (%d, %d), strides (%d, %d), "
            "dilations (%d, %d), is (%d, %d), which should be a "
            "positive integer.",
            in_dims[2],
            in_dims[3],
            kernel_sizes[0],
            kernel_sizes[1],
            strides[0],
            strides[1],
            dilations[0],
            dilations[1],
            output_height,
            output_width));
  }
  int output_col_length = output_height * output_width;
  out_dims.push_back(output_col_length);
  out->set_dims(phi::make_ddim(out_dims));
}

L
Linjie Chen 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
void DiagInferMeta(const MetaTensor& x,
                   int offset,
                   float padding_value,
                   MetaTensor* out) {
  auto x_dims = x.dims();

  if (x_dims.size() == 1UL) {
    int64_t size_ = x_dims[0] + std::abs(offset);
    out->set_dims({size_, size_});
    out->set_dtype(x.dtype());
  } else if (x_dims.size() == 2UL) {
    int64_t size_ = 0;
    if (offset >= 0) {
      // Note(LutaoChu): Do not use std::min here, otherwise the calculation
      // of `size_` will have unexpected result on Windows Python3.8
      if (x_dims[0] < x_dims[1] - offset) {
        size_ = x_dims[0];
      } else {
        size_ = x_dims[1] - offset;
      }
    } else {
      // Note(LutaoChu): Do not use std::min here, otherwise the calculation
      // of `size_` will have unexpected result on Windows Python3.8
      if (x_dims[0] + offset < x_dims[1]) {
        size_ = x_dims[0] + offset;
      } else {
        size_ = x_dims[1];
      }
    }
    out->set_dims({size_});
    out->set_dtype(x.dtype());
  } else {
    PADDLE_THROW(phi::errors::InvalidArgument(
        "The input tensor X's dimensions of DiagV2Op should be either 1 or "
        "2, but received %d.",
        x_dims.size()));
  }
}

859
}  // namespace phi
860

861 862
PD_REGISTER_INFER_META_FN(copy_to, phi::CopyToInferMeta);
PD_REGISTER_INFER_META_FN(split, phi::SplitInferMeta);