analysis_predictor.cc 27.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16 17
#include <glog/logging.h>
#include <algorithm>
N
nhzlx 已提交
18
#include <fstream>
19
#include <memory>
20 21
#include <string>
#include <vector>
22
#include "paddle/fluid/framework/feed_fetch_method.h"
23
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
24
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
25
#include "paddle/fluid/framework/ir/pass.h"
26
#include "paddle/fluid/framework/naive_executor.h"
27
#include "paddle/fluid/framework/scope.h"
Y
Yan Chunwei 已提交
28
#include "paddle/fluid/framework/var_type_traits.h"
29
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
30
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
31
#include "paddle/fluid/inference/api/helper.h"
32
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
33
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
34
#include "paddle/fluid/inference/utils/singleton.h"
35
#include "paddle/fluid/memory/memcpy.h"
36
#include "paddle/fluid/platform/cpu_helper.h"
37
#include "paddle/fluid/platform/gpu_info.h"
T
tensor-tang 已提交
38 39
#include "paddle/fluid/platform/profiler.h"

Y
Yan Chunwei 已提交
40 41
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
42
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
N
nhzlx 已提交
43

Y
Yan Chunwei 已提交
44 45
#endif

T
tensor-tang 已提交
46
DECLARE_bool(profile);
47 48 49

namespace paddle {

N
nhzlx 已提交
50
using inference::Singleton;
N
nhzlx 已提交
51
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
52
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
53 54
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
N
nhzlx 已提交
55
#endif
56

57 58 59 60
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
61 62
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
63 64 65 66 67 68
    return true;
  }
  return false;
}
}  // namespace

Y
Yan Chunwei 已提交
69
bool AnalysisPredictor::Init(
70 71
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
72
  VLOG(3) << "Predictor::init()";
T
tensor-tang 已提交
73 74 75
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";
76 77
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
78 79 80
    platform::EnableProfiler(tracking_device);
  }

81
  // no matter with or without MKLDNN
L
luotao1 已提交
82
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
83

84 85 86 87 88 89 90 91 92 93 94 95 96
  if (!PrepareScope(parent_scope)) {
    return false;
  }
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
97
  }
98 99 100 101 102 103 104 105 106

  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

  return true;
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
Y
Yan Chunwei 已提交
107
  if (parent_scope) {
108 109 110
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        "Both program and parent_scope should be set in Clone mode.");
Y
Yan Chunwei 已提交
111
    scope_ = parent_scope;
112
    status_is_cloned_ = true;
Y
Yan Chunwei 已提交
113 114 115
  } else {
    paddle::framework::InitDevices(false);
    scope_.reset(new paddle::framework::Scope());
116
    status_is_cloned_ = false;
Y
Yan Chunwei 已提交
117
  }
118 119 120 121 122
  sub_scope_ = &scope_->NewScope();
  return true;
}
bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
123 124
  if (!program) {
    if (!LoadProgramDesc()) return false;
125

126 127 128 129 130 131 132 133 134
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

135 136 137
    // Optimize the program, and load parameters and modify them in the
    // scope_.
    // This will change the scope_ address.
138
    if (config_.ir_optim()) {
139 140 141 142 143 144 145
      status_ir_optim_enabled_ = true;
      OptimizeInferenceProgram();
    } else {
      // Load parameters
      LOG(INFO) << "load parameters ";
      LoadParameters();
    }
Y
Yan Chunwei 已提交
146
  } else {
147 148
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
149 150
    inference_program_ = program;
  }
M
Michal Gallus 已提交
151

152 153 154 155 156
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}
bool AnalysisPredictor::CreateExecutor() {
157
  if (config_.use_gpu_) {
158
    status_use_gpu_ = true;
159
    place_ = paddle::platform::CUDAPlace(config_.device_id_);
160 161 162 163 164 165 166 167
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
bool AnalysisPredictor::PrepareExecutor() {
  executor_->Prepare(sub_scope_, *inference_program_, 0,
168
                     config_.use_feed_fetch_ops_);
169

170
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
Y
Yan Chunwei 已提交
171

172 173 174
  return true;
}

L
luotao1 已提交
175
void AnalysisPredictor::SetMkldnnThreadID(int tid) {
L
luotao1 已提交
176 177 178 179 180 181 182
#ifdef PADDLE_WITH_MKLDNN
  platform::set_cur_thread_id(tid);
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
#endif
}

183 184 185
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
L
luotao1 已提交
186 187 188
  if (UNLIKELY(config_.cpu_math_library_num_threads() > 1)) {
    paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
  }
M
minqiyang 已提交
189
  VLOG(3) << "Predictor::predict";
190 191 192 193 194 195
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
196
    return false;
197
  }
M
Michal Gallus 已提交
198

199 200 201
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
202

203 204 205 206
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
207
  }
Y
Yan Chunwei 已提交
208 209 210 211 212 213

  // Collect variable shapes for memory optimization.
  if (need_collect_var_shapes_for_memory_optim()) {
    CollectVarShapes();
  }

M
minqiyang 已提交
214
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
215

Y
Yan Chunwei 已提交
216 217 218 219 220 221 222
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
  tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  tensor_array_batch_cleaner_.ResetNoTensorVars();
223 224
  return true;
}
225

226 227
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
228
  VLOG(3) << "Predictor::set_feed";
229 230 231 232 233 234 235 236 237 238 239 240 241 242
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
    auto &input = feed_tensors_[i];
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
243
      input_ptr = input.mutable_data<int64_t>(ddim, place_);
244
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
245
      input_ptr = input.mutable_data<float>(ddim, place_);
246 247 248 249 250
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

251 252 253 254 255 256
    if (platform::is_cpu_place(place_)) {
      // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
      std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
                  inputs[i].data.length());
    } else {
#ifdef PADDLE_WITH_CUDA
Q
qingqing01 已提交
257 258 259 260
      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto *dev_ctx =
          static_cast<const platform::CUDADeviceContext *>(pool.Get(place_));
261 262 263
      auto dst_gpu_place = boost::get<platform::CUDAPlace>(place_);
      memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                   platform::CPUPlace(), inputs[i].data.data(),
Q
qingqing01 已提交
264
                   inputs[i].data.length(), dev_ctx->stream());
265 266 267 268
#else
      PADDLE_THROW("Not compile with CUDA, should not reach here.");
#endif
    }
269 270 271 272 273 274 275
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
    int idx = -1;
276
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
277 278
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
279 280
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
281 282
      }
      idx = feed_names_[name];
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
313
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
314 315 316
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
    int idx = boost::get<int>(fetches_[i]->GetAttr("col"));
317 318 319 320 321
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
        framework::GetFetchVariable(*scope, "fetch", idx);
    auto type = fetch.type();
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
322
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
323
    if (type == framework::proto::VarType::FP32) {
324 325
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
326
    } else if (type == framework::proto::VarType::INT64) {
327 328 329 330 331 332
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
    } else {
      LOG(ERROR) << "unknown type, only support float32 and int64 now.";
    }
  }
Y
Yan Chunwei 已提交
333 334
  return true;
}
335

336
// NOTE All the members in AnalysisConfig should be copied to Argument.
Y
Yan Chunwei 已提交
337
void AnalysisPredictor::OptimizeInferenceProgram() {
338 339
  status_program_optimized_ = true;

340 341
  argument_.SetUseGPU(config_.use_gpu());
  argument_.SetGPUDeviceId(config_.gpu_device_id());
Y
Yan Chunwei 已提交
342
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
Y
Yan Chunwei 已提交
343 344 345
  argument_.SetStaticMemoryOptim(config_.static_memory_optim_);
  argument_.SetStaticMemoryOptimForceUpdate(
      config_.static_memory_optim_force_update_);
T
Tao Luo 已提交
346
  argument_.SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
347
  // Analyze inference_program
348 349
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
350 351
  } else {
    PADDLE_ENFORCE(
352
        !config_.params_file().empty(),
T
Tao Luo 已提交
353
        "Either model_dir or (param_file, prog_file) should be set.");
354
    PADDLE_ENFORCE(!config_.prog_file().empty());
N
nhzlx 已提交
355
    std::string dir = inference::analysis::GetDirRoot(config_.prog_file());
N
nhzlx 已提交
356

357 358
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
359
  }
360

361
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
362
    LOG(INFO) << "TensorRT subgraph engine is enabled";
363 364 365
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
366
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
N
nhzlx 已提交
367
    argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
N
nhzlx 已提交
368
    argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
W
Wojciech Uss 已提交
369
  }
370

371
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
372
    LOG(INFO) << "MKLDNN is enabled";
373 374 375
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

376
  auto passes = config_.pass_builder()->AllPasses();
Y
Yan Chunwei 已提交
377 378 379 380
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
381
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
382
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
383
  argument_.SetScopeNotOwned(scope_.get());
384 385 386 387 388
  Analyzer().Run(&argument_);

  PADDLE_ENFORCE(argument_.scope_valid());
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
389
  inference_program_.reset(
390
      new framework::ProgramDesc(argument_.ir_analyzed_program()));
391
  LOG(INFO) << "== optimize end ==";
Y
Yan Chunwei 已提交
392
}
393 394

template <>
395 396
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
M
minqiyang 已提交
397
  VLOG(3) << "create AnalysisConfig";
398
  if (config.use_gpu()) {
S
Sylwester Fraczek 已提交
399
    // 1. GPU memory
400 401 402
    PADDLE_ENFORCE_GT(config.memory_pool_init_size_mb(), 0.f);
    PADDLE_ENFORCE_GE(config.gpu_device_id(), 0, "Invalid device id %d",
                      config.gpu_device_id());
403
    std::vector<std::string> flags;
404 405 406 407 408 409 410 411 412 413 414

    float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
    if (fraction_of_gpu_memory > 0.95f) {
      LOG(ERROR)
          << "Allocate too much memory for the GPU memory pool, assigned "
          << config.memory_pool_init_size_mb() << " MB";
      LOG(ERROR)
          << "Try to shink the value by setting AnalysisConfig::EnableGpu(...)";
    }

    if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
415 416
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
417
                         std::to_string(fraction_of_gpu_memory);
418
      flags.push_back(flag);
M
minqiyang 已提交
419
      VLOG(3) << "set flag: " << flag;
420 421 422 423 424
      framework::InitGflags(flags);
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
425
  if (!dynamic_cast<AnalysisPredictor *>(predictor.get())->Init(nullptr)) {
426 427
    return nullptr;
  }
G
Gabor Buella 已提交
428
  return predictor;
429 430
}

431
void AnalysisPredictor::PrepareFeedFetch() {
432 433
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
  CreateFeedFetchVar(sub_scope_);
434 435 436 437 438 439 440 441
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
442
      idx2feeds_[idx] = op->Output("Out")[0];
443 444
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
Y
Yan Chunwei 已提交
445 446
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
447
      }
Y
Yan Chunwei 已提交
448
      fetches_[idx] = op;
N
nhzlx 已提交
449
      idx2fetches_[idx] = op->Input("X")[0];
450 451 452 453
    }
  }
}

454 455 456 457 458 459 460 461
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
  PADDLE_ENFORCE_NOT_NULL(scope);
  auto *var = scope->Var("feed");
  var->GetMutable<framework::FeedFetchList>();
  var = scope->Var("fetch");
  var->GetMutable<framework::FeedFetchList>();
}

N
nhzlx 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

478 479 480 481 482 483 484
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
485 486 487 488 489 490 491
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
    auto gpu_place = boost::get<platform::CUDAPlace>(place_);
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }

492 493 494 495 496 497 498 499 500 501
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
502 503 504 505 506 507
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
    auto gpu_place = boost::get<platform::CUDAPlace>(place_);
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
508 509 510 511 512
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
  executor_->Run();
Y
Yan Chunwei 已提交
513
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
514
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
515
  tensor_array_batch_cleaner_.ResetTensorArray();
516 517 518 519 520
  return true;
}

bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
521
  std::string filename;
522 523 524
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
  } else if (!config_.prog_file().empty() && !config_.params_file().empty()) {
525 526 527
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
528
    filename = config_.prog_file();
529
  } else {
530
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
531 532 533 534
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
535
    LOG(ERROR) << string::Sprintf(
536 537
        "not valid model path '%s' or program path '%s'.", config_.model_dir(),
        config_.params_file());
538 539
    return false;
  }
540 541 542

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
543
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
544 545 546
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
T
Tao Luo 已提交
547 548
    PADDLE_ENFORCE(static_cast<bool>(fin.is_open()), "Cannot open file %s",
                   filename);
T
Tao Luo 已提交
549 550 551 552 553 554 555 556
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
557
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
558
  }
559 560 561 562 563 564 565
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          "The inference program should be loaded first.");
T
Tao Luo 已提交
566

567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

587
      if (!config_.params_file().empty()) {
588 589 590 591 592 593
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
594
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
595 596 597 598 599
        op->CheckAttrs();
      }
    }
  }

600
  if (!config_.params_file().empty()) {
601 602 603 604 605 606
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
607
    op->SetAttr("file_path", {config_.params_file()});
608 609 610 611
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
612
  framework::NaiveExecutor e(place_);
613 614 615 616
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

617 618
  return true;
}
619

N
nhzlx 已提交
620
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
621 622 623 624 625 626 627 628
bool AnalysisPredictor::SaveTrtCalibToDisk() {
  PADDLE_ENFORCE(config_.tensorrt_engine_enabled(),
                 "This func can be invoked only in trt mode");
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
      std::string engine_name =
          boost::get<std::string>(op_desc->GetAttr("engine_key"));
N
nhzlx 已提交
629
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
630 631 632 633
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
634 635
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
636
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
637
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
638 639
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
640 641 642
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
643

N
nhzlx 已提交
644
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
645 646 647
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
648

N
nhzlx 已提交
649 650 651 652 653
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
654
      std::string calibration_table_data_path =
N
nhzlx 已提交
655 656 657 658
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
659 660 661 662 663

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
664 665 666 667
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
668
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
669 670
  return true;
}
N
nhzlx 已提交
671
#endif
N
nhzlx 已提交
672

673
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
674
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
675
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
676 677
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
678 679
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
680
#endif
681 682 683 684 685 686 687
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
688 689 690 691 692 693 694

  // TODO(Superjomn) deduce the directory path.
  std::string out_path = inference::analysis::GetMemoryCachePath(
      config_.model_dir(), config_.prog_file());
  if (need_collect_var_shapes_for_memory_optim()) {
    SerializeBatchVarShapes(out_path);
  }
695 696
}

697
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
Y
Yan Chunwei 已提交
698
  std::lock_guard<std::mutex> lk(clone_mutex_);
699 700 701 702 703
  auto *x = new AnalysisPredictor(config_);
  x->Init(scope_, inference_program_);
  return std::unique_ptr<PaddlePredictor>(x);
}

Y
Yan Chunwei 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
void AnalysisPredictor::CollectVarShapes() {
  VLOG(4) << "Collecting var shapes";
  if (batch_var_shapes_.size() >= max_shape_collect_count_) return;
  std::map<std::string, std::vector<int>> var_shapes;
  for (auto var_name : inference_program_->Block(0).LocalVarNames()) {
    auto *var = sub_scope_->FindVar(var_name);
    PADDLE_ENFORCE_NOT_NULL(var);
    if (var->Type() == framework::VarTypeTrait<framework::LoDTensor>::kId ||
        var->Type() == framework::VarTypeTrait<framework::Tensor>::kId) {
      auto &tensor = var->Get<framework::LoDTensor>();
      auto shape = framework::vectorize(tensor.dims());
      var_shapes[var_name].assign(shape.begin(), shape.end());
    }
  }
  batch_var_shapes_.push_back(var_shapes);
  LOG_FIRST_N(INFO, 1) << "Collected " << batch_var_shapes_.size()
                       << " batch of var shapes for analysis";
}

void AnalysisPredictor::SerializeBatchVarShapes(const std::string &path) {
  LOG(INFO) << "serialize batch var shapes to " << path;
  std::ofstream file(path);
  if (!file.is_open()) {
    LOG(ERROR) << "failed to serialize the var shapes to " << path;
    return;
  }

  // The sirialized data format:
  // <tensor_name>:dim0,dim1,dim2,;
  for (auto &batch : batch_var_shapes_) {
    for (auto &ele : batch) {
      file << ele.first << ":";
      for (size_t i = 0; i < ele.second.size() - 1; i++) {
        file << ele.second[i] << ",";
      }
      file << ele.second.back() << ";";
    }
    file << "\n";
  }
}

bool AnalysisPredictor::need_collect_var_shapes_for_memory_optim() {
  if (need_collect_var_shapes_ >= 0) return need_collect_var_shapes_;
  bool need = false;
  // check if the cache exists
  if (!config_.enable_memory_optim()) {
    need = false;
Y
Yan Chunwei 已提交
751
  } else if (config_.static_memory_optim_ &&
Y
Yan Chunwei 已提交
752 753 754
             !inference::IsFileExists(inference::analysis::GetMemoryCachePath(
                 config_.model_dir(), config_.prog_file()))) {
    need = true;
Y
Yan Chunwei 已提交
755 756
  } else if (config_.static_memory_optim_ &&
             config_.static_memory_optim_force_update_) {
Y
Yan Chunwei 已提交
757 758 759 760 761 762 763
    need = true;
  }

  need_collect_var_shapes_ = need ? 1 : 0;
  return need;
}

764
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
765 766 767
  return inference_program_->Proto()->SerializeAsString();
}

Y
Yan Chunwei 已提交
768
template <>
769 770 771 772
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
773 774
}

775
}  // namespace paddle
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
USE_TRT_CONVERTER(mul);
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
798
USE_TRT_CONVERTER(split);
799 800
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
801
USE_TRT_CONVERTER(leaky_relu);
802
#endif