test_base_layer.py 19.1 KB
Newer Older
X
polish  
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

X
polish  
Xin Pan 已提交
17 18
import numpy as np

19
import paddle
X
polish  
Xin Pan 已提交
20
import paddle.fluid as fluid
21
from paddle.fluid.dygraph import to_variable
22
from paddle.fluid.framework import EagerParamBase, ParamBase, in_dygraph_mode
X
polish  
Xin Pan 已提交
23 24


25
class L1(fluid.Layer):
26
    def __init__(self):
27
        super().__init__()
28
        self._param_attr = fluid.ParamAttr(
29 30 31 32 33 34 35 36
            initializer=fluid.initializer.Constant(value=0.1)
        )
        self.w1 = self.create_parameter(
            attr=self._param_attr, shape=[2, 2], dtype='float32', is_bias=False
        )
        self.w2 = self.create_parameter(
            attr=self._param_attr, shape=[2, 2], dtype='float32', is_bias=False
        )
X
polish  
Xin Pan 已提交
37 38 39 40 41

    def forward(self):
        return self.w1 + self.w2


42
class L2(fluid.Layer):
43
    def __init__(self):
44
        super().__init__()
45 46
        self.layer1 = L1()
        self.layer2 = L1()
X
polish  
Xin Pan 已提交
47 48 49 50 51

    def forward(self):
        return self.layer1() + self.layer2()


52
class L3(fluid.Layer):
53
    def __init__(self):
54
        super().__init__()
55 56
        self.layer1 = L2()
        self.layer2 = L2()
X
polish  
Xin Pan 已提交
57 58 59 60 61 62

    def forward(self):
        return self.layer1() + self.layer2()


class TestBaseLayer(unittest.TestCase):
63
    def test_one_level(self):
L
lujun 已提交
64
        with fluid.dygraph.guard():
65
            l = L1()
X
polish  
Xin Pan 已提交
66
            ret = l()
67 68 69 70 71
            expected_names = ['l1.w1', 'l1.w2']
            idx = 0
            for name, _ in l.named_parameters(prefix='l1'):
                self.assertEqual(name, expected_names[idx])
                idx += 1
72 73 74
            np.testing.assert_allclose(
                ret.numpy(), 0.2 * np.ones([2, 2]), rtol=1e-05
            )
X
polish  
Xin Pan 已提交
75

76
    def test_three_level(self):
L
lujun 已提交
77
        with fluid.dygraph.guard():
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
            l = L3()
            expected_names = [
                'l3.layer1.layer1.w1',
                'l3.layer1.layer1.w2',
                'l3.layer1.layer2.w1',
                'l3.layer1.layer2.w2',
                'l3.layer2.layer1.w1',
                'l3.layer2.layer1.w2',
                'l3.layer2.layer2.w1',
                'l3.layer2.layer2.w2',
            ]
            idx = 0
            for name, _ in l.named_parameters(prefix='l3'):
                self.assertEqual(name, expected_names[idx])
                idx += 1
X
polish  
Xin Pan 已提交
93
            ret = l()
94 95 96
            np.testing.assert_allclose(
                ret.numpy(), 0.8 * np.ones([2, 2]), rtol=1e-05
            )
X
polish  
Xin Pan 已提交
97

98
    def test_add_parameter_with_error(self):
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        with fluid.dygraph.guard():
            net = fluid.Layer()
            param = net.create_parameter(shape=[1])

            with self.assertRaises(TypeError):
                net.add_parameter(10, param)

            with self.assertRaises(KeyError):
                net.add_parameter("param.name", param)

            with self.assertRaises(KeyError):
                net.add_parameter("", param)

            with self.assertRaises(KeyError):
                net.test_param = 10
                net.add_parameter("test_param", param)

            with self.assertRaises(TypeError):
                net.add_parameter("no_param", 10)

            load_param = net.create_parameter(shape=[1])
            net._loaddict_holder[load_param.name] = load_param
            net.add_parameter("load_param", load_param)

X
polish  
Xin Pan 已提交
123

124 125
class BufferLayer(fluid.Layer):
    def __init__(self):
126
        super().__init__()
127 128 129 130 131 132 133 134 135
        buffer_var = to_variable(np.zeros([2, 4]).astype('int32'))
        self.register_buffer("layer_buffer", buffer_var)

    def forward(self):
        pass


class BufferNet(fluid.Layer):
    def __init__(self):
136
        super().__init__()
137
        self.buffer_layer = BufferLayer()
138 139 140
        self.w1 = self.create_parameter(
            shape=[2, 2], dtype='float32', is_bias=False
        )
141 142 143 144 145 146 147 148 149 150
        buffer_var = to_variable(np.ones([2, 4]).astype('int32'))
        self.register_buffer("net_buffer", buffer_var)

        self.new_buffer = to_variable(np.ones([4, 2]).astype('int32'))

    def forward(self):
        pass


class TestBuffer(unittest.TestCase):
151
    def test_buffers_and_named_buffers(self):
152 153 154 155 156 157 158 159 160 161 162 163 164
        def names(named_buffers):
            return [name for name, _ in named_buffers]

        with fluid.dygraph.guard():
            layer = BufferLayer()
            net = BufferNet()

            self.assertEqual(len(layer.buffers()), 1)
            self.assertEqual(names(layer.named_buffers()), ['layer_buffer'])

            self.assertEqual(len(net.buffers()), 3)
            self.assertEqual(
                names(net.named_buffers()),
165 166
                ['net_buffer', 'new_buffer', 'buffer_layer.layer_buffer'],
            )
167 168

            self.assertEqual(len(net.buffers(include_sublayers=False)), 2)
169 170 171 172
            self.assertEqual(
                names(net.named_buffers(include_sublayers=False)),
                ['net_buffer', 'new_buffer'],
            )
173

174
    def test_register_buffer_with_error(self):
175 176 177 178
        with fluid.dygraph.guard():
            net = fluid.Layer()
            var = to_variable(np.zeros([1]))

179
            with self.assertRaisesRegex(
180 181
                TypeError, "name of buffer should be a string"
            ):
182 183
                net.register_buffer(12, var)

184
            with self.assertRaisesRegex(
185 186
                TypeError, "buffer should be a Paddle.Tensor"
            ):
W
wanghuancoder 已提交
187
                if in_dygraph_mode():
188 189 190
                    net.register_buffer(
                        "buffer_name", EagerParamBase([2, 2], 'float32')
                    )
W
wanghuancoder 已提交
191
                else:
192 193 194
                    net.register_buffer(
                        "buffer_name", ParamBase([2, 2], 'float32')
                    )
195

196
            with self.assertRaisesRegex(
197 198
                KeyError, "name of buffer can not contain"
            ):
199 200
                net.register_buffer("buffer.name", var)

201
            with self.assertRaisesRegex(
202 203
                KeyError, "name of buffer can not be empty"
            ):
204 205 206
                net.register_buffer("", var)

            net.attr_name = 10
207
            with self.assertRaisesRegex(KeyError, "already exists"):
208 209 210
                net.register_buffer("attr_name", var)

            del net.attr_name
W
wanghuancoder 已提交
211 212 213 214
            if in_dygraph_mode():
                net.attr_name = EagerParamBase([2, 2], 'float32')
            else:
                net.attr_name = ParamBase([2, 2], 'float32')
215
            with self.assertRaisesRegex(KeyError, "already exists"):
216 217
                net.register_buffer("attr_name", var)

218
    def test_register_buffer_same_name(self):
219 220 221 222 223 224 225 226 227 228 229 230 231
        with fluid.dygraph.guard():
            net = fluid.Layer()
            var1 = to_variable(np.zeros([1]))
            var2 = to_variable(np.zeros([2]))
            var3 = to_variable(np.zeros([3]))

            net.register_buffer("buffer_name", var1)
            self.assert_var_base_equal(net.buffer_name, var1)
            net.register_buffer("buffer_name", var2)
            self.assert_var_base_equal(net.buffer_name, var2)
            net.register_buffer("buffer_name", var3)
            self.assert_var_base_equal(net.buffer_name, var3)

232
    def test_buffer_not_persistable(self):
233 234 235 236 237 238 239 240
        with fluid.dygraph.guard():
            net = fluid.Layer()
            var1 = to_variable(np.zeros([1]))

            net.register_buffer("buffer_name", var1, persistable=False)
            self.assertEqual(len(net.buffers()), 1)
            self.assertEqual(len(net.state_dict()), 0)

241
    def test_buffer_not_persistable_del(self):
242 243 244 245 246 247 248
        with fluid.dygraph.guard():
            net = fluid.Layer()
            var1 = to_variable(np.zeros([1]))
            net.register_buffer("buffer_name", var1, persistable=False)
            del net.buffer_name
            self.assertEqual(len(net.buffers()), 0)

249
    def test_buffer_not_persistable_overwrite(self):
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
        with fluid.dygraph.guard():
            net = fluid.Layer()
            var1 = to_variable(np.zeros([1]))
            var2 = to_variable(np.zeros([2]))
            net.register_buffer("buffer_name", var1, persistable=False)
            net.register_buffer("buffer_name", var2)

            # Allow to overwrite a non-persistable buffer with a persistable var.
            self.assertEqual(len(net.buffers()), 1)
            self.assertEqual(len(net.state_dict()), 1)

            net.register_buffer("buffer_name", var1, persistable=False)
            self.assertEqual(len(net.buffers()), 1)
            self.assertEqual(len(net.state_dict()), 0)

265
    def test_buffer_not_persistable_assign(self):
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
        with fluid.dygraph.guard():
            net = fluid.Layer()
            var1 = to_variable(np.zeros([1]))
            net.register_buffer("buffer_name", var1, persistable=False)

            # Assigning Nones will remove the buffer, but allow to re-assign
            # to remark it as buffer.
            net.buffer_name = None
            self.assertEqual(len(net.buffers()), 0)
            self.assertEqual(len(net.state_dict()), 0)

            net.buffer_name = var1
            self.assertEqual(len(net.buffers()), 1)
            self.assertEqual(len(net.state_dict()), 0)

            # Re-assign a ParamBase will remove the buffer.
W
wanghuancoder 已提交
282 283 284 285
            if in_dygraph_mode():
                net.buffer_name = EagerParamBase([2, 2], 'float32')
            else:
                net.buffer_name = ParamBase([2, 2], 'float32')
286 287 288
            self.assertEqual(len(net.buffers()), 0)
            self.assertEqual(len(net.state_dict()), 1)

289
    def test_buffer_not_persistable_load(self):
290 291 292 293 294 295
        with fluid.dygraph.guard():
            net = fluid.Layer()
            var1 = to_variable(np.zeros([1]))
            net.register_buffer("buffer_name", var1, persistable=False)
            net.load_dict({})

296
    def test_buffer_state_dict(self):
297 298 299 300 301 302 303 304
        with fluid.dygraph.guard():
            net = fluid.Layer()
            var1 = to_variable(np.zeros([2, 3]))
            var2 = to_variable(np.zeros([3, 2]))
            net.register_buffer("buffer_var1", var1)
            net.register_buffer("buffer_var2", var2, persistable=False)

            self.assertEqual(len(net.state_dict()), 1)
305 306 307
            self.assertEqual(
                [name for name, _ in net.state_dict().items()], ["buffer_var1"]
            )
308 309 310 311 312 313 314 315 316 317

            # load state_dict
            net_load = fluid.Layer()
            var = to_variable(np.ones([2, 3]))
            net_load.register_buffer("buffer_var1", var)
            net_load.load_dict(net.state_dict())

            self.assert_var_base_equal(net_load.buffer_var1, var1)

    def assert_var_base_equal(self, var1, var2):
318
        np.testing.assert_array_equal(var1.numpy(), var2.numpy())
319 320


321 322
class BufferNetWithModification(paddle.nn.Layer):
    def __init__(self, shape):
323
        super().__init__()
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

        self.buffer1 = paddle.zeros(shape, 'int32')
        self.buffer2 = paddle.zeros(shape, 'int32')

    @paddle.jit.to_static
    def forward(self, x):
        self.buffer1 += x
        self.buffer2 = self.buffer1 + x

        out = self.buffer1 + self.buffer2

        return out


class TestModifiedBuffer(unittest.TestCase):
W
wanghuancoder 已提交
339
    def funcsetUp(self):
340 341 342 343
        paddle.disable_static()
        self.shape = [10, 16]

    def _run(self, to_static=False):
R
Ryan 已提交
344
        paddle.jit.enable_to_static(to_static)
345 346 347 348 349 350 351

        x = paddle.ones([1], 'int32')
        net = BufferNetWithModification(self.shape)
        out = net(x)

        return out, net.buffer1, net.buffer2

352
    def test_modified(self):
W
wanghuancoder 已提交
353
        self.funcsetUp()
354 355 356 357
        dy_outs = self._run(False)
        st_outs = self._run(True)

        for i in range(len(dy_outs)):
358 359 360
            np.testing.assert_array_equal(
                dy_outs[i].numpy(), st_outs[i].numpy()
            )
361 362


C
chentianyu03 已提交
363
class TestLayerTo(unittest.TestCase):
W
wanghuancoder 已提交
364
    def funcsetUp(self):
C
chentianyu03 已提交
365 366 367 368 369 370 371 372
        paddle.disable_static()
        self.linear = paddle.nn.Linear(2, 2)
        self.new_grad = np.random.random([2, 2])
        self.linear.weight._set_grad_ivar(paddle.to_tensor(self.new_grad))
        buffer = paddle.to_tensor([0.0], dtype='float32')
        self.linear.register_buffer("buf_name", buffer, persistable=True)

        sublayer = paddle.nn.Conv1D(3, 2, 3)
373
        self.linear.add_sublayer("1", sublayer)
C
chentianyu03 已提交
374

W
wanghuancoder 已提交
375
    def func_test_to_api(self):
C
chentianyu03 已提交
376
        self.linear.to(dtype='double')
377 378 379 380 381 382 383 384 385 386 387 388 389
        self.assertEqual(
            self.linear.weight.dtype, paddle.fluid.core.VarDesc.VarType.FP64
        )
        self.assertEqual(
            self.linear.buf_name.dtype, paddle.fluid.core.VarDesc.VarType.FP64
        )
        np.testing.assert_allclose(
            self.linear.weight.grad.numpy(), self.new_grad, rtol=1e-05
        )
        self.assertEqual(
            self.linear.weight._grad_ivar().dtype,
            paddle.fluid.core.VarDesc.VarType.FP64,
        )
C
chentianyu03 已提交
390 391

        self.linear.to()
392 393 394 395 396 397 398 399 400 401 402 403 404
        self.assertEqual(
            self.linear.weight.dtype, paddle.fluid.core.VarDesc.VarType.FP64
        )
        self.assertEqual(
            self.linear.buf_name.dtype, paddle.fluid.core.VarDesc.VarType.FP64
        )
        np.testing.assert_allclose(
            self.linear.weight.grad.numpy(), self.new_grad, rtol=1e-05
        )
        self.assertEqual(
            self.linear.weight._grad_ivar().dtype,
            paddle.fluid.core.VarDesc.VarType.FP64,
        )
405
        for p in self.linear.parameters():
W
wanghuancoder 已提交
406 407
            if in_dygraph_mode():
                self.assertTrue(
408 409
                    isinstance(p, paddle.fluid.framework.EagerParamBase)
                )
W
wanghuancoder 已提交
410 411
            else:
                self.assertTrue(isinstance(p, paddle.fluid.framework.ParamBase))
C
chentianyu03 已提交
412 413 414 415 416 417 418

        if paddle.fluid.is_compiled_with_cuda():
            self.linear.to(device=paddle.CUDAPlace(0))
            self.assertTrue(self.linear.weight.place.is_gpu_place())
            self.assertEqual(self.linear.weight.place.gpu_device_id(), 0)
            self.assertTrue(self.linear.buf_name.place.is_gpu_place())
            self.assertEqual(self.linear.buf_name.place.gpu_device_id(), 0)
419
            self.assertTrue(
420 421
                self.linear.weight._grad_ivar().place.is_gpu_place()
            )
C
chentianyu03 已提交
422
            self.assertEqual(
423 424
                self.linear.weight._grad_ivar().place.gpu_device_id(), 0
            )
C
chentianyu03 已提交
425 426 427 428 429 430

            self.linear.to(device='gpu:0')
            self.assertTrue(self.linear.weight.place.is_gpu_place())
            self.assertEqual(self.linear.weight.place.gpu_device_id(), 0)
            self.assertTrue(self.linear.buf_name.place.is_gpu_place())
            self.assertEqual(self.linear.buf_name.place.gpu_device_id(), 0)
431
            self.assertTrue(
432 433
                self.linear.weight._grad_ivar().place.is_gpu_place()
            )
C
chentianyu03 已提交
434
            self.assertEqual(
435 436
                self.linear.weight._grad_ivar().place.gpu_device_id(), 0
            )
437
            for p in self.linear.parameters():
W
wanghuancoder 已提交
438 439
                if in_dygraph_mode():
                    self.assertTrue(
440 441
                        isinstance(p, paddle.fluid.framework.EagerParamBase)
                    )
W
wanghuancoder 已提交
442 443
                else:
                    self.assertTrue(
444 445
                        isinstance(p, paddle.fluid.framework.ParamBase)
                    )
C
chentianyu03 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460

        self.linear.to(device=paddle.CPUPlace())
        self.assertTrue(self.linear.weight.place.is_cpu_place())
        self.assertTrue(self.linear.buf_name.place.is_cpu_place())
        self.assertTrue(self.linear.weight._grad_ivar().place.is_cpu_place())

        self.linear.to(device='cpu')
        self.assertTrue(self.linear.weight.place.is_cpu_place())
        self.assertTrue(self.linear.buf_name.place.is_cpu_place())
        self.assertTrue(self.linear.weight._grad_ivar().place.is_cpu_place())

        self.assertRaises(ValueError, self.linear.to, device=1)

        self.assertRaises(AssertionError, self.linear.to, blocking=1)

W
wanghuancoder 已提交
461
    def func_test_to_api_paddle_dtype(self):
462
        self.linear.to(dtype=paddle.float64)
463 464 465 466 467 468 469 470 471 472 473 474 475
        self.assertEqual(
            self.linear.weight.dtype, paddle.fluid.core.VarDesc.VarType.FP64
        )
        self.assertEqual(
            self.linear.buf_name.dtype, paddle.fluid.core.VarDesc.VarType.FP64
        )
        np.testing.assert_allclose(
            self.linear.weight.grad.numpy(), self.new_grad, rtol=1e-05
        )
        self.assertEqual(
            self.linear.weight._grad_ivar().dtype,
            paddle.fluid.core.VarDesc.VarType.FP64,
        )
476 477

        self.linear.to()
478 479 480 481 482 483 484 485 486 487 488 489 490
        self.assertEqual(
            self.linear.weight.dtype, paddle.fluid.core.VarDesc.VarType.FP64
        )
        self.assertEqual(
            self.linear.buf_name.dtype, paddle.fluid.core.VarDesc.VarType.FP64
        )
        np.testing.assert_allclose(
            self.linear.weight.grad.numpy(), self.new_grad, rtol=1e-05
        )
        self.assertEqual(
            self.linear.weight._grad_ivar().dtype,
            paddle.fluid.core.VarDesc.VarType.FP64,
        )
491
        for p in self.linear.parameters():
W
wanghuancoder 已提交
492 493
            if in_dygraph_mode():
                self.assertTrue(
494 495
                    isinstance(p, paddle.fluid.framework.EagerParamBase)
                )
W
wanghuancoder 已提交
496 497
            else:
                self.assertTrue(isinstance(p, paddle.fluid.framework.ParamBase))
498

W
wanghuancoder 已提交
499
    def func_test_to_api_numpy_dtype(self):
500
        self.linear.to(dtype=np.float64)
501 502 503 504 505 506 507 508 509 510 511 512 513
        self.assertEqual(
            self.linear.weight.dtype, paddle.fluid.core.VarDesc.VarType.FP64
        )
        self.assertEqual(
            self.linear.buf_name.dtype, paddle.fluid.core.VarDesc.VarType.FP64
        )
        np.testing.assert_allclose(
            self.linear.weight.grad.numpy(), self.new_grad, rtol=1e-05
        )
        self.assertEqual(
            self.linear.weight._grad_ivar().dtype,
            paddle.fluid.core.VarDesc.VarType.FP64,
        )
514 515

        self.linear.to()
516 517 518 519 520 521 522 523 524 525 526 527 528
        self.assertEqual(
            self.linear.weight.dtype, paddle.fluid.core.VarDesc.VarType.FP64
        )
        self.assertEqual(
            self.linear.buf_name.dtype, paddle.fluid.core.VarDesc.VarType.FP64
        )
        np.testing.assert_allclose(
            self.linear.weight.grad.numpy(), self.new_grad, rtol=1e-05
        )
        self.assertEqual(
            self.linear.weight._grad_ivar().dtype,
            paddle.fluid.core.VarDesc.VarType.FP64,
        )
529
        for p in self.linear.parameters():
W
wanghuancoder 已提交
530 531
            if in_dygraph_mode():
                self.assertTrue(
532 533
                    isinstance(p, paddle.fluid.framework.EagerParamBase)
                )
W
wanghuancoder 已提交
534 535 536
            else:
                self.assertTrue(isinstance(p, paddle.fluid.framework.ParamBase))

537 538 539 540 541
    def func_test_to_api_none_buffer(self):
        model = paddle.nn.Linear(2, 4)
        buffer = None
        model.register_buffer("buf_name", buffer, persistable=True)
        model.to(dtype='float64')
542
        self.assertIsNone(model._buffers['buf_name'])
543

W
wanghuancoder 已提交
544 545 546 547 548
    def test_main(self):
        self.funcsetUp()
        self.func_test_to_api()
        self.func_test_to_api_paddle_dtype()
        self.func_test_to_api_numpy_dtype()
549
        self.func_test_to_api_none_buffer()
550

C
chentianyu03 已提交
551

X
polish  
Xin Pan 已提交
552
if __name__ == '__main__':
H
hong 已提交
553
    paddle.enable_static()
X
polish  
Xin Pan 已提交
554
    unittest.main()