pad_op_npu.cc 3.1 KB
Newer Older
F
furnace 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"

namespace paddle {
namespace operators {

template <typename T>
class PadNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
25 26
    auto* x = context.Input<phi::DenseTensor>("X");
    auto* out = context.Output<phi::DenseTensor>("Out");
F
furnace 已提交
27 28 29
    auto paddings = context.Attr<std::vector<int>>("paddings");
    float pad_value = context.Attr<float>("pad_value");

30 31
    PADDLE_ENFORCE_LT(abs(pad_value),
                      1e-5,
F
furnace 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
                      platform::errors::Unimplemented(
                          "Ascend npu only support pad_value=0 right now,"
                          "but received pad_value is %f .",
                          pad_value));

    out->mutable_data<T>(context.GetPlace());

    NpuOpRunner runner;
    runner.SetType("Pad")
        .AddInput(*x)
        .AddInput(std::move(paddings))
        .AddOutput(*out);

    auto stream =
        context.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    runner.Run(stream);
  }
};

template <typename T>
class PadGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
56 57 58
    auto* d_out =
        context.Input<phi::DenseTensor>(framework::GradVarName("Out"));
    auto* d_x = context.Output<phi::DenseTensor>(framework::GradVarName("X"));
F
furnace 已提交
59 60 61 62 63
    auto paddings = context.Attr<std::vector<int>>("paddings");

    d_x->mutable_data<T>(context.GetPlace());

    auto d_x_dims = d_x->dims();
64
    auto size = phi::vectorize(d_x_dims);
F
furnace 已提交
65 66 67 68 69 70 71 72 73 74 75 76
    std::vector<int> offsets(0);
    int i = 0;
    for (auto iter = paddings.begin(); iter < paddings.end(); ++iter, ++i) {
      if (i % 2 == 0) {
        offsets.push_back(*iter);
      }
    }

    auto stream =
        context.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

77 78
    const auto& runner = NpuOpRunner(
        "SliceD", {*d_out}, {*d_x}, {{"offsets", offsets}, {"size", size}});
F
furnace 已提交
79 80 81 82 83 84 85 86 87 88
    runner.Run(stream);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

89 90 91 92
REGISTER_OP_NPU_KERNEL(pad,
                       ops::PadNPUKernel<plat::float16>,
                       ops::PadNPUKernel<float>,
                       ops::PadNPUKernel<int>);
F
furnace 已提交
93

94 95
REGISTER_OP_NPU_KERNEL(pad_grad,
                       ops::PadGradNPUKernel<plat::float16>,
F
furnace 已提交
96
                       ops::PadGradNPUKernel<float>);