log_loss_op_npu.cc 4.4 KB
Newer Older
Z
zhulei 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
13
limitations under the License. */
Z
zhulei 已提交
14 15

#include <cmath>
16

17
#include "paddle/fluid/framework/op_registry.h"
Z
zhulei 已提交
18 19 20 21 22

namespace paddle {
namespace operators {

template <typename T>
23 24
void LogLossAdds(const platform::Place& place,
                 const aclrtStream& stream,
25
                 const phi::DenseTensor* x,
26
                 float scale,
27
                 phi::DenseTensor* y) {
Z
zhulei 已提交
28 29 30 31 32 33 34
  //  Calculate y = x + scale
  y->mutable_data<T>(x->dims(), place);
  const auto& runner = NpuOpRunner("Adds", {*x}, {*y}, {{"value", scale}});
  runner.Run(stream);
}

template <typename T>
35 36
void LogLossMuls(const platform::Place& place,
                 const aclrtStream& stream,
37
                 const phi::DenseTensor* x,
38
                 float scale,
39
                 phi::DenseTensor* y) {
Z
zhulei 已提交
40 41 42 43 44 45 46
  //  Calculate y = x + scale
  y->mutable_data<T>(x->dims(), place);
  const auto& runner = NpuOpRunner("Muls", {*x}, {*y}, {{"value", scale}});
  runner.Run(stream);
}

template <typename T>
47 48
void LogLossBCE(const platform::Place& place,
                const aclrtStream& stream,
49 50 51
                const phi::DenseTensor* x,
                const phi::DenseTensor* y,
                phi::DenseTensor* z) {
Z
zhulei 已提交
52 53
  z->mutable_data<T>(x->dims(), place);
  const auto& runner =
54 55 56
      NpuOpRunner("BinaryCrossEntropy",
                  {*x, *y},
                  {*z},
Z
zhulei 已提交
57 58 59 60 61
                  {{"reduction", static_cast<std::string>("none")}});
  runner.Run(stream);
}

template <typename T>
62 63
void LogLossBCEGrad(const platform::Place& place,
                    const aclrtStream& stream,
64 65 66 67
                    const phi::DenseTensor* x,
                    const phi::DenseTensor* y,
                    const phi::DenseTensor* dout,
                    phi::DenseTensor* dx) {
Z
zhulei 已提交
68 69
  dx->mutable_data<T>(x->dims(), place);
  const auto& runner =
70 71 72
      NpuOpRunner("BinaryCrossEntropyGrad",
                  {*x, *y, *dout},
                  {*dx},
Z
zhulei 已提交
73 74 75 76 77 78 79 80
                  {{"reduction", static_cast<std::string>("none")}});
  runner.Run(stream);
}

template <typename T, typename AttrType = T>
class LogLossNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
81 82 83
    auto* y = ctx.Output<phi::DenseTensor>("Loss");
    auto* pred = ctx.Input<phi::DenseTensor>("Predicted");
    auto* label = ctx.Input<phi::DenseTensor>("Labels");
Z
zhulei 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    auto epsilon = static_cast<T>(ctx.Attr<AttrType>("epsilon"));

    auto place = ctx.GetPlace();
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    float factor = 1 / (1 + 2 * epsilon);
    float coef = std::log(factor);
    LogLossAdds<T>(place, stream, pred, epsilon, y);
    LogLossMuls<T>(place, stream, y, factor, y);
    LogLossBCE<T>(place, stream, y, label, y);
    LogLossAdds<T>(place, stream, y, coef, y);
  }
};

template <typename T, typename AttrType = T>
class LogLossGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
104 105 106 107 108
    auto* pred = ctx.Input<phi::DenseTensor>("Predicted");
    auto* label = ctx.Input<phi::DenseTensor>("Labels");
    auto* dloss = ctx.Input<phi::DenseTensor>(framework::GradVarName("Loss"));
    auto* dpred =
        ctx.Output<phi::DenseTensor>(framework::GradVarName("Predicted"));
Z
zhulei 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    auto epsilon = static_cast<T>(ctx.Attr<AttrType>("epsilon"));

    auto place = ctx.GetPlace();
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    if (dpred) {
      LogLossBCEGrad<T>(place, stream, pred, label, dloss, dpred);
      LogLossMuls<T>(place, stream, dpred, 1 / (1 + 2 * epsilon), dpred);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(log_loss, ops::LogLossNPUKernel<float>);

REGISTER_OP_NPU_KERNEL(log_loss_grad, ops::LogLossGradNPUKernel<float>);