huber_loss_op_npu.cc 5.1 KB
Newer Older
Z
zhulei 已提交
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2

Z
zhulei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Z
zhulei 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

Z
zhulei 已提交
9 10 11 12
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
13
limitations under the License. */
Z
zhulei 已提交
14

15
#include "paddle/fluid/framework/op_registry.h"
Z
zhulei 已提交
16 17 18 19 20

namespace paddle {
namespace operators {

template <typename T>
21 22
void HuberLossSub(const platform::Place& place,
                  const aclrtStream& stream,
23 24 25
                  const phi::DenseTensor* x,
                  const phi::DenseTensor* y,
                  phi::DenseTensor* z) {
Z
zhulei 已提交
26 27 28 29 30 31 32
  //  Calculate z = x - y
  z->mutable_data<T>(x->dims(), place);
  const auto& runner = NpuOpRunner("Sub", {*x, *y}, {*z}, {});
  runner.Run(stream);
}

template <typename T>
33 34
void HuberLossMuls(const platform::Place& place,
                   const aclrtStream& stream,
35
                   const phi::DenseTensor* x,
36
                   float scalar,
37
                   phi::DenseTensor* y) {
Z
zhulei 已提交
38 39 40 41 42 43 44
  //  Calculate y = x + scale
  y->mutable_data<T>(x->dims(), place);
  const auto& runner = NpuOpRunner("Muls", {*x}, {*y}, {{"value", scalar}});
  runner.Run(stream);
}

template <typename T>
45 46
void HuberLossZerosLike(const platform::Place& place,
                        const aclrtStream& stream,
47 48
                        const phi::DenseTensor* x,
                        phi::DenseTensor* y) {
Z
zhulei 已提交
49 50 51 52 53 54 55
  y->mutable_data<T>(x->dims(), place);
  const auto& runner = NpuOpRunner("ZerosLike", {*x}, {*y}, {});
  runner.Run(stream);
}

template <typename T>
void HuberLossSmoothL1Loss(const platform::Place& place,
56
                           const aclrtStream& stream,
57 58
                           const phi::DenseTensor* x,
                           const phi::DenseTensor* y,
59
                           float delta,
60
                           phi::DenseTensor* z) {
Z
zhulei 已提交
61 62 63 64 65 66 67 68
  z->mutable_data<T>(x->dims(), place);
  const auto& runner =
      NpuOpRunner("SmoothL1Loss", {*x, *y}, {*z}, {{"sigma", delta}});
  runner.Run(stream);
}

template <typename T>
void HuberLossSmoothL1LossGrad(const platform::Place& place,
69
                               const aclrtStream& stream,
70 71 72
                               const phi::DenseTensor* pred,
                               const phi::DenseTensor* lab,
                               const phi::DenseTensor* dout,
73
                               float sigma,
74
                               phi::DenseTensor* grad) {
Z
zhulei 已提交
75
  grad->mutable_data<T>(pred->dims(), place);
76 77
  const auto& runner = NpuOpRunner(
      "SmoothL1LossGrad", {*pred, *lab, *dout}, {*grad}, {{"sigma", sigma}});
Z
zhulei 已提交
78 79 80 81 82 83 84
  runner.Run(stream);
}

template <typename T>
class HuberLossNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
85 86 87 88
    auto* in0 = ctx.Input<phi::DenseTensor>("X");
    auto* in1 = ctx.Input<phi::DenseTensor>("Y");
    auto* residual = ctx.Output<phi::DenseTensor>("Residual");
    auto* out = ctx.Output<phi::DenseTensor>("Out");
Z
zhulei 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    auto delta = ctx.Attr<float>("delta");

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    auto place = ctx.GetPlace();
    HuberLossSub<T>(place, stream, in1, in0, residual);

    HuberLossSmoothL1Loss<T>(place, stream, in0, in1, delta, out);
    HuberLossMuls<T>(place, stream, out, delta, out);
  }
};

template <typename T>
class HuberLossGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
106 107 108 109
    auto* residual = ctx.Input<phi::DenseTensor>("Residual");
    auto* dout = ctx.Input<phi::DenseTensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<phi::DenseTensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<phi::DenseTensor>(framework::GradVarName("Y"));
Z
zhulei 已提交
110 111 112 113 114 115 116
    auto delta = ctx.Attr<float>("delta");

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    auto place = ctx.GetPlace();

117
    phi::DenseTensor t_grad_rd;
Z
zhulei 已提交
118
    if (dx || dy) {
119
      phi::DenseTensor t_zero;
Z
zhulei 已提交
120
      HuberLossZerosLike<T>(place, stream, residual, &t_zero);
121 122
      HuberLossSmoothL1LossGrad<T>(
          place, stream, residual, &t_zero, dout, delta, &t_grad_rd);
Z
zhulei 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    }
    if (dx) {
      HuberLossMuls<T>(place, stream, &t_grad_rd, -delta, dx);
    }
    if (dy) {
      HuberLossMuls<T>(place, stream, &t_grad_rd, delta, dy);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

139 140
REGISTER_OP_NPU_KERNEL(huber_loss,
                       ops::HuberLossNPUKernel<float>,
Z
zhulei 已提交
141
                       ops::HuberLossNPUKernel<plat::float16>);
142 143
REGISTER_OP_NPU_KERNEL(huber_loss_grad,
                       ops::HuberLossGradNPUKernel<float>,
Z
zhulei 已提交
144
                       ops::HuberLossGradNPUKernel<plat::float16>);